Un [[gate quantistico]] che permette di effettuare una rotazione su asse arbitrario. Usando la [[formula di Eulero]], esso corrisponde a: $$ \def \varX {{\color{coral} \theta}} \def \varY {{\color{cornflowerblue} \phi}} \def \varZ {{\color{yellowgreen} \lambda}} \def \varI {{\color{hotpink} i}} \Huge \mathbf{U}(\varX, \varY, \varZ) = \begin{bmatrix} \cos \left( \frac{\varX}{2} \right) & - e^{\varI \varZ} \sin \left( \frac{\varX}{2} \right) \\ e^{\varI \varY} \sin \left( \frac{\varX}{2} \right) & e^{\varI \varY + \varI \varZ} \sin \left( \frac{\varX}{2} \right) \end{bmatrix} $$ Espanso, sarebbe: $$ \def \varX {{\color{coral} \theta}} \def \varY {{\color{cornflowerblue} \phi}} \def \varZ {{\color{yellowgreen} \lambda}} \def \varI {{\color{hotpink} i}} \mathbf{U}(\varX, \varY, \varZ) = \begin{bmatrix} \cos \frac{\varX}{2} & - (\cos \varZ + \varI \sin \varZ) \cdot \sin \frac{\varX}{2} \\ (\cos \varY + \varI \sin \varY) \cdot \sin \frac{\varX}{2} & (cos (\varY + \varZ) + \varI \sin (\varY + \varZ)) \cdot \sin \frac{\varX}{2} \end{bmatrix} $$