1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-3.git synced 2024-11-22 16:04:21 +00:00
bda-3-steffo/unimore_bda_3/loaders/steam.py
2023-07-02 09:08:57 +02:00

100 lines
2.5 KiB
Python

from unimore_bda_3.prelude import *
import httpx
import collections
steam_api = httpx.Client(base_url="https://api.steampowered.com")
def _load_news(appid: int) -> list[dict]:
"""
Load all news items for the given app id, from the most recent to the least recent.
"""
count = 100
enddate = {}
newsitems = []
while count == 100:
request = steam_api.get(
"/ISteamNews/GetNewsForApp/v0002/",
params={
"appid": appid,
"count": 100,
"format": "json",
**enddate,
}
)
request.raise_for_status()
data = request.json()["appnews"]
count = len(data["newsitems"])
newsitems.extend(data["newsitems"])
enddate = {"enddate": newsitems[-1]["date"]}
return newsitems
def _categorize_news(news: list[dict]) -> dict[str, list[dict]]:
"""
Group news items by their tags.
"""
result = collections.defaultdict(list)
for item in news:
tags = item.get("tags", [])
if tags:
for tag in set(item.get("tags", [])):
result[tag].append(item)
else:
result["no_tags"].append(item)
return result
def _serialize_news(name: str, news: list[dict]) -> pd.Series:
"""
Convert a list of news into a `pandas.Series` with the dates as index and 1 as the data.
"""
index = pd.to_datetime([datetime.fromtimestamp(item["date"]) for item in news])
return pd.Series(
data=[1 for _ in index],
index=index,
name=f"""Steam · Count of News tagged {name}""",
dtype=np.uint8,
)
def fetch(appid: int) -> pd.DataFrame:
"""
Load announcements related to a certain app id into a `pandas.DataFrame`.
"""
raw_news = _load_news(appid=appid)
categorized_news = _categorize_news(news=raw_news)
serialized_news = [_serialize_news(name=name, news=news).to_frame() for name, news in categorized_news.items()]
dataframe = utils.join_frames(*serialized_news).fillna(0)
dataframe = dataframe.groupby(dataframe.index.date).sum()
dataframe.index = pd.to_datetime(dataframe.index)
return dataframe
def load(fd: t.IO[str]) -> pd.DataFrame:
"""
Load announcements related to the app id contained in the given file into a `pandas.DataFrame`.
"""
appid = int(fd.read().strip())
data = fetch(appid=appid)
return data
__all__ = (
"fetch",
"load",
)