> 2. Modificare il dataset recuperando anche recensioni a 2, 3 e 4 stelle ed effettuare una classificazione a più classi (es. 5 classi di sentiment corrispondenti al numero di stelle delle recensioni).
> * E’ necessario effettuare tutti i test su un numero significativo di run (es., almeno 50), scegliendo ogni volta in maniera casuale la composizione di test-set e training-set a partire dall’insieme di post estratti (è possibile utilizzare le feature automatiche di cross validation viste per scikit-learn)
> * E’ possibile (e gradito) estendere in ampiezza la propria analisi:
> * utilizzare e confrontare una o più delle librerie di ML viste a lezione (NLTK/scikitlearn/XGBoost/Tensorflow) (NOTA: per le tracce 2 e 3 è necessario sperimentare anche almeno una libreria diversa da NLTK)
> * utilizzare e confrontare diversi classificatori tra quelli offerti (es. quelli citati a lezione in scikit-learn) e una o più delle tecniche citate/viste a lezione (es. codifica del testo tramite TF-IDF, word embeddings per tensorflow, hyper-parameter tuning per scikit-learn, tecniche specifiche per sent. analysis, …)
> * utilizzare librerie per l’elaborazione del testo alternative (es. SpaCy https://spacy.io/ ) per estrarre feature aggiuntive, valutandone l’effetto sul modello
> * in generale: studiare, riassumere brevemente e applicare eventuali altre tecniche o strumenti ritenuti utili all’obiettivo (cioè, migliorare l’efficacia del modello proposto).
>
> Consegna: PDF commentato con discussione e codice Python (includere dati e codice anche in un file .txt per facilitarne il testing)
In questo progetto si è realizzato una struttura che permettesse di mettere a confronto diversi modi per effettuare sentiment analysis, e poi si sono realizzati su di essa alcuni modelli di sentiment analysis con caratteristiche diverse per confrontarli.
L'accelerazione hardware di Tensorflow richiede che una scheda grafica NVIDIA con supporto a CUDA sia disponibile sul dispositivo, e che gli strumenti di sviluppo di CUDA siano installati sul sistema operativo.
Per indicare a Tensorflow il percorso degli strumenti di sviluppo di CUDA, è necessario impostare la seguente variabile d'ambiente, sostituendo a `/opt/cuda` il percorso in cui gli strumenti sono installati sul dispositivo:
Per più informazioni, si suggerisce di consultare la pagina [Install Tensorflow 2](https://www.tensorflow.org/install) della documentazione di Tensorflow.
Al fine di effettuare i confronti richiesti dalla consegna dell'attività, si è deciso di realizzare un modulo Python che permettesse di confrontare vari modelli di Sentiment Analysis tra loro, con tokenizer, training set e test set diversi tra loro.