1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-22 16:04:18 +00:00
bda-6-steffo/unimore_bda_6/__main__.py

99 lines
4.1 KiB
Python
Raw Normal View History

import logging
2023-02-08 18:46:05 +00:00
import pymongo.errors
2023-02-10 03:07:34 +00:00
from .log import install_general_log_handlers
2023-02-08 18:46:05 +00:00
2023-02-10 03:07:34 +00:00
install_general_log_handlers()
2023-02-08 18:46:05 +00:00
from .config import config
from .database import mongo_client_from_config, reviews_collection, sample_reviews_polar, sample_reviews_varied
2023-02-10 04:52:13 +00:00
from .analysis import NLTKSentimentAnalyzer, TensorflowCategorySentimentAnalyzer, TensorflowPolarSentimentAnalyzer
2023-02-08 09:54:14 +00:00
from .analysis.base import TrainingFailedError
2023-02-08 18:46:05 +00:00
from .tokenizer import PlainTokenizer, LowercaseTokenizer, NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation
from .gathering import Caches
2023-02-01 03:20:09 +00:00
log = logging.getLogger(__name__)
2023-02-01 01:33:42 +00:00
def main():
2023-02-08 18:46:05 +00:00
log.info("Started unimore-bda-6 in %s mode!", "DEBUG" if __debug__ else "PRODUCTION")
log.debug("Validating configuration...")
config.proxies.resolve()
log.debug("Ensuring there are no leftover caches...")
Caches.ensure_clean()
with mongo_client_from_config() as db:
try:
db.admin.command("ping")
except pymongo.errors.ServerSelectionTimeoutError:
log.fatal("MongoDB database is not available, exiting...")
exit(1)
reviews = reviews_collection(db)
for sample_func in [sample_reviews_varied, sample_reviews_polar]:
2023-02-10 02:30:41 +00:00
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}")
2023-02-10 03:07:34 +00:00
slog.debug("Selected sample_func: %s", sample_func.__name__)
2023-02-10 02:30:41 +00:00
2023-02-08 18:46:05 +00:00
for SentimentAnalyzer in [
2023-02-10 04:52:13 +00:00
TensorflowPolarSentimentAnalyzer,
TensorflowCategorySentimentAnalyzer,
2023-02-10 04:18:24 +00:00
NLTKSentimentAnalyzer,
]:
2023-02-10 02:30:41 +00:00
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}")
2023-02-10 03:07:34 +00:00
slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__)
2023-02-10 02:30:41 +00:00
2023-02-08 18:46:05 +00:00
for Tokenizer in [
PlainTokenizer,
LowercaseTokenizer,
NLTKWordTokenizer,
2023-02-10 04:18:24 +00:00
PottsTokenizer,
PottsTokenizerWithNegation,
2023-02-08 18:46:05 +00:00
]:
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
2023-02-10 03:07:34 +00:00
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
2023-02-10 02:32:31 +00:00
run_counter = 0
2023-02-08 18:46:05 +00:00
while True:
2023-02-10 02:32:31 +00:00
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{run_counter}")
run_counter += 1
slog.debug("Run #%d", run_counter)
2023-02-10 05:21:50 +00:00
if run_counter >= 100:
slog.fatal("Exceeded 100 runs, giving up and exiting...")
exit(2)
2023-02-08 18:46:05 +00:00
try:
2023-02-10 03:07:34 +00:00
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
2023-02-08 18:46:05 +00:00
sa = SentimentAnalyzer(tokenizer=Tokenizer())
except TypeError:
2023-02-10 03:07:34 +00:00
slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__)
2023-02-08 18:46:05 +00:00
break
2023-02-08 18:46:05 +00:00
with Caches.from_database_samples(collection=reviews, sample_func=sample_func) as datasets:
2023-02-08 09:54:14 +00:00
try:
2023-02-08 18:46:05 +00:00
slog.info("Training sentiment analyzer: %s", sa)
sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation)
except TrainingFailedError:
slog.error("Training failed, trying again with a different dataset...")
continue
2023-02-08 18:46:05 +00:00
else:
slog.info("Training succeeded!")
2023-02-08 18:46:05 +00:00
slog.info("Evaluating sentiment analyzer: %s", sa)
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
slog.info("Evaluation results: %s", evaluation_results)
break
2023-02-01 01:33:42 +00:00
if __name__ == "__main__":
main()