> 2. Modificare il dataset recuperando anche recensioni a 2, 3 e 4 stelle ed effettuare una classificazione a più classi (es. 5 classi di sentiment corrispondenti al numero di stelle delle recensioni).
> * E’ necessario effettuare tutti i test su un numero significativo di run (es., almeno 50), scegliendo ogni volta in maniera casuale la composizione di test-set e training-set a partire dall’insieme di post estratti (è possibile utilizzare le feature automatiche di cross validation viste per scikit-learn)
> * E’ possibile (e gradito) estendere in ampiezza la propria analisi:
> * utilizzare e confrontare una o più delle librerie di ML viste a lezione (NLTK/scikitlearn/XGBoost/Tensorflow) (NOTA: per le tracce 2 e 3 è necessario sperimentare anche almeno una libreria diversa da NLTK)
> * utilizzare e confrontare diversi classificatori tra quelli offerti (es. quelli citati a lezione in scikit-learn) e una o più delle tecniche citate/viste a lezione (es. codifica del testo tramite TF-IDF, word embeddings per tensorflow, hyper-parameter tuning per scikit-learn, tecniche specifiche per sent. analysis, …)
> * utilizzare librerie per l’elaborazione del testo alternative (es. SpaCy https://spacy.io/ ) per estrarre feature aggiuntive, valutandone l’effetto sul modello
> * in generale: studiare, riassumere brevemente e applicare eventuali altre tecniche o strumenti ritenuti utili all’obiettivo (cioè, migliorare l’efficacia del modello proposto).
>
> Consegna: PDF commentato con discussione e codice Python (includere dati e codice anche in un file .txt per facilitarne il testing)
In questo progetto si è realizzato una struttura che permettesse di mettere a confronto diversi modi per effettuare sentiment analysis, e poi si sono realizzati su di essa alcuni modelli di sentiment analysis con caratteristiche diverse per confrontarli.
> In questo documento sono riportate parti del codice: in esse, è stato rimosso il codice superfluo come comandi di logging, docstring e commenti, in modo da accorciare la relazione e per mantenere l'attenzione sull'argomento della rispettiva sezione.
>
> Nel titolo di ciascuna sezione è evidenziato il file da cui gli spezzoni di codice provengono: se si necessitano sapere più dettagli sul funzionamento di esso, si consiglia di andare a vedere i file sorgente allegati, che contengono la documentazione necessaria.
L'accelerazione hardware di Tensorflow richiede che una scheda grafica NVIDIA con supporto a CUDA sia disponibile sul dispositivo, e che gli strumenti di sviluppo di CUDA siano installati sul sistema operativo.
Per indicare a Tensorflow il percorso degli strumenti di sviluppo di CUDA, è necessario impostare la seguente variabile d'ambiente, sostituendo a `/opt/cuda` il percorso in cui gli strumenti sono installati sul dispositivo:
Per più informazioni, si suggerisce di consultare la pagina [Install Tensorflow 2](https://www.tensorflow.org/install) della documentazione di Tensorflow.
Al fine di effettuare i confronti richiesti dalla consegna dell'attività, si è deciso di realizzare un package Python che permettesse di confrontare vari modelli di Sentiment Analysis tra loro, con tokenizer, training set e evaluation set (spesso detto *test set*) diversi tra loro.
Il primo modulo, `unimore_bda_6.config`, definisce le variabili configurabili del package usando [`cfig`], e, se eseguito, mostra all'utente un'interfaccia command-line che le descrive e ne mostra i valori attuali.
Viene prima creato un oggetto [`cfig.Configuration`], che opera come contenitore per le variabili configurabili:
```python
import cfig
config = cfig.Configuration()
```
In seguito, per ogni variabile configurabile viene definita una funzione, che elabora il valore ottenuto dalle variabili di ambiente del contesto in cui il programma è eseguito, convertendolo in un formato più facilmente utilizzabile dal programma.
Si fornisce un esempio di una di queste funzioni, che definisce la variabile per configurare la dimensione del training set:
```python
@config.optional()
def TRAINING_SET_SIZE(val: str | None) -> int:
"""
The number of reviews from each category to fetch for the training dataset.
(Nel gergo del machine learning / deep learning, queste variabili sono dette iperparametri, perchè configurano la creazione del modello, e non vengono configurate dall'addestramento del modello stesso.)
Infine, si aggiunge una chiamata al metodo `cli()` della configurazione, eseguita solo se il modulo viene eseguito come main, che mostra all'utente l'interfaccia precedentemente menzionata:
```python
if __name__ == "__main__":
config.cli()
```
L'esecuzione del modulo `unimore_bda_6.config`, senza variabili d'ambiente definite, dà quindi il seguente output:
Il modulo `unimore_bda_6.database` si occupa della connessione al database [MongoDB] e la collezione contenente il dataset di partenza, del recupero dei documenti in modo bilanciato, della conversione di essi in un formato più facilmente leggibile da Python, e della creazione di cache su disco per permettere alle librerie che lo supportano di non caricare l'intero dataset in memoria durante l'addestramento di un modello.
#### Connessione al database - `.database.connection`
Il modulo `unimore_bda_6.database.connection` si occupa della conessione (e disconnessione) al database utilizzando il package [`pymongo`].
Definisce un context manager che effettua automaticamente la disconnessione dal database una volta usciti dal suo scope:
Il modulo `unimore_bda_6.database.datatypes` contiene contenitori ottimizzati (attraverso l'attributo magico [`__slots__`]) per i dati recuperati dal database, che possono essere riassunti con:
```python
@dataclasses.dataclass
class TextReview:
text: str
rating: float
@dataclasses.dataclass
class TokenizedReview:
tokens: list[str]
rating: float
```
#### Query su MongoDB - `.database.queries`
Il modulo `unimore_bda_6.database.queries` contiene alcune query pre-costruite utili per operare sulla collezione `reviews`.
##### Working set
Essendo il dataset completo composto da 23 milioni, 831 mila e 908 documenti (23_831_908), effettuare campionamenti su di esso in fase di sviluppo risulterebbe eccessivamente lento e dispendioso, pertanto in ogni query il dataset viene rimpicciolito a un *working set* attraverso l'uso del seguente aggregation pipeline stage, dove `WORKING_SET_SIZE` è sostituito dal suo corrispondente valore nella configurazione (di default 1_000_000):
```javascript
{"$limit": WORKING_SET_SIZE},
```
##### Dataset con solo recensioni 1* e 5* - `sample_reviews_polar`
Per recuperare un dataset bilanciato di recensioni 1* e 5*, viene utilizzata la seguente funzione:
L'aggregazione eseguita non è altro che l'unione dei risultati delle seguenti due aggregazioni, i cui risultati vengono poi mescolati attraverso l'ordinamento su un campo contenente il risultato dell'operatore [`$rand`]:
```javascript
db.reviews.aggregate([
{"$limit": WORKING_SET_SIZE},
{"$match": {"overall": 1.0}},
{"$sample": {"size": amount / 2}},
])
// unita a
db.reviews.aggregate([
{"$limit": WORKING_SET_SIZE},
{"$match": {"overall": 5.0}},
{"$sample": {"size": amount / 2}},
])
// e poi mescolate
```
##### Dataset bilanciato con recensioni 1*, 2*, 3*, 4* e 5*
Lo stesso procedimento viene usato per ottenere un dataset bilanciato di recensioni con ogni numero possibile di stelle:
Si è realizzata una classe astratta che rappresentasse un tokenizer qualcunque, in modo da avere la stessa interfaccia a livello di codice indipendentemente dal package di tokenizzazione utilizzato:
```python
class BaseTokenizer(metaclass=abc.ABCMeta):
@abc.abstractmethod
def tokenize(self, text: str) -> t.Iterator[str]:
"Convert a text `str` into another `str` containing a series of whitespace-separated tokens."
Si sono poi realizzate due classi di esempio che implementassero i metodi astratti della precedente: `PlainTokenizer` e `LowerTokenizer`, che semplicemente separano il testo in tokens attraverso la funzione builtin [`str.split`] di Python, rispettivamente mantenendo e rimuovendo la capitalizzazione del testo.
Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category.
Si può notare che il metodo `evaluate` inserisce i risultati di ciascuna predizione effettuata in un oggetto di tipo `EvaluationResults`.
Esso tiene traccia della matrice di confusione per la valutazione, e da essa è in grado di ricavarne i valori di richiamo e precisione per ciascuna categoria implementata dal modello; inoltre, calcola l'errore medio assoluto e quadrato tra previsioni e valori effettivi:
Si è inoltre realizzata un'implementazione di esempio della classe astratta, `ThreeCheat`, che "prevede" che tutte le recensioni siano di 3.0*, in modo da verificare facilmente la correttezza della precedente classe:
Il livello di logging viene regolato attraverso la costante magica [`__debug__`] di Python, il cui valore cambia in base alla presenza dell'opzione di ottimizzazione [`-O`] dell'interprete Python; senza quest'ultima, i log stampati su console saranno molto più dettagliati.
Infine, si è preparato un tester che effettuasse ripetute valutazioni di efficacia per ogni combinazione di funzione di campionamento, tokenizzatore, e modello di Sentiment Analysis, con una struttura simile alla seguente:
Le valutazioni di efficacia vengono effettuate fino al raggiungimento di `TARGET_RUNS` addestramenti e valutazioni riuscite, o fino al raggiungimento di `MAXIMUM_RUNS` valutazioni totali (come descritto più avanti, l'addestramento di alcuni modelli potrebbe fallire e dover essere ripetuto).
Si è creata una nuova sottoclasse di `BaseTokenizer`, `NLTKWordTokenizer`, che usa la tokenizzazione inclusa con NLTK.
Per separare le parole in token, essa chiama [`nltk.word_tokenize`], funzione built-in che sfrutta i tokenizer [Punkt] e [Treebank] per dividere rispettivamente in frasi e parole la stringa passata come input.
La lista di tokens viene poi passata a [`nltk.sentiment.util.mark_negation`], che aggiunge il suffisso `_NEG` a tutti i token che si trovano tra una negazione e un segno di punteggiatura, in modo che la loro semantica venga preservata anche all'interno di un contesto *bag of words*, in cui le posizioni dei token vengono ignorate.
(È considerato negazione qualsiasi token che finisce con `n't`, oppure uno dei seguenti token: `never`, `no`, `nothing`, `nowhere`, `noone`, `none`, `not`, `havent`, `hasnt`, `hadnt`, `cant`, `couldnt`, `shouldnt`, `wont`, `wouldnt`, `dont`, `doesnt`, `didnt`, `isnt`, `arent`, `aint`.)
### Costruzione del modello - `.analysis.nltk_sentiment`
Si è creata anche una sottoclasse di `BaseSentimentAnalyzer`, `NLTKSentimentAnalyzer`, che utilizza per la classificazione un modello di tipo [`nltk.sentiment.SentimentAnalyzer`].
```python
class NLTKSentimentAnalyzer(BaseSentimentAnalyzer):
Esattamente come il modello realizzato a lezione, in fase di addestramento esso:
1. Prende il testo di ogni recensione del training set
2. Lo converte in una lista di token
3. Conta le occorrenze totali di ogni token della precedente lista per determinare quelli che compaiono in almeno 4 recensioni diverse
4. Utilizza questi token frequenti per identificare le caratteristiche ("features") da usare per effettuare la classificazione
Successivamente:
5. Identifica la presenza delle caratteristiche in ciascun elemento del training set
6. Addestra un classificatore Bayesiano semplice ("naive Bayes") perchè determini la probabilità che data una certa feature, una recensione abbia un certo numero di stelle
2. utilizza il modello precedentemente addestrato per determinare la categoria ("rating") di appartenenza
```python
...
def use(self, text: str) -> float:
if not self.trained:
raise NotTrainedError()
tokens = self.tokenizer.tokenize(text)
rating = self.model.classify(instance=tokens)
rating = float(rating)
return rating
```
#### Problemi di RAM
L'approccio utilizzato da [`nltk.sentiment.SentimentAnalyzer`] si è rivelato problematico, in quanto non in grado di scalare a dimensioni molto grandi di training set: i suoi metodi non gestiscono correttamente gli iteratori, meccanismo attraverso il quale Python può realizzare lazy-loading di dati, e richiedono invece che l'intero training set sia caricato contemporaneamente in memoria in una [`list`].
Per permetterne l'esecuzione su computer con 16 GB di RAM, si è deciso di impostare la dimensione predefinita del training set a `4000` documenti; dimensioni maggiori richiederebbero una riscrittura completa dei metodi di NLTK, e ciò andrebbe fuori dallo scopo di questa attività.
Per realizzare il punto 1 della consegna, si sono creati due nuovi tokenizer, `PottsTokenizer` e `PottsTokenizerWithNegation`, che implementano il [tokenizer di Christopher Potts] rispettivamente senza marcare e marcando le negazioni sui token attraverso [`ntlk.sentiment.util.mark_negation`].
Essendo il tokenizer originale scritto per Python 2, e non direttamente immediatamente compatibile con `BaseTokenizer`, si è scelto di studiare il codice originale e ricrearlo in un formato più adatto a questo progetto.
Prima di effettuare la tokenizzazione, il tokenizer normalizza l'input:
1. convertendo tutte le entità HTML come `<` nel loro corrispondente unicode `<`
2. convertendo il carattere `&` nel token `and`
Il tokenizer effettua poi la tokenizzazione usando espressioni regolari definite in `words_re_string` per catturare token di diversi tipi, in ordine:
* emoticon testuali `:)`
* numeri di telefono statunitensi `+1 123 456 7890`
Dopo aver tokenizzato, il tokenizer processa il risultato convertendo il testo a lowercase, facendo attenzione però a non cambiare la capitalizzazione delle emoticon per non cambiare il loro significato (`:D` è diverso da `:d`).
## Implementazione di modelli con Tensorflow+Keras - `.analysis.tf_text`
Visti i problemi riscontrati con NLTK, si è deciso di realizzare nuovi modelli utilizzando stavolta [Tensorflow], il package per il deep learning sviluppato da Google, unito a [Keras], API di Tensorflow che permette la definizione di modelli di deep learning attraverso un linguaggio ad alto livello.
Tensorflow prende il nome dai *tensori*, le strutture matematiche su cui si basa, che consistono in una maggiore astrazione delle matrici o degli array, e che vengono implementate dalla libreria stessa nella classe [`tensorflow.Tensor`].
### Aggiunta di un validation set
La documentazione di Tensorflow suggerisce, in fase di addestramento di modello, di includere un *validation set*, un piccolo dataset su cui misurare le metriche del modello ad ogni epoca di addestramento, in modo da poter verificare in tempo reale che non si stia verificando underfitting o overfitting.
Si è quindi deciso di includerlo come parametro di `BaseSentimentAnalyzer.train`:
Per essere efficienti, i modelli di Tensorflow richiedono che i dati vengano inseriti in un formato molto specifico: un'istanza della classe [`tensorflow.data.Dataset`].
I dataset, per essere creati, richiedono però che gli venga dato in input un *generatore* (funzione che crea un iteratore quando chiamata), e non un *iteratore* (oggetto con un puntatore al successivo) come quello restituito dalle query di MongoDB, in quanto Tensorflow necessita di ricominciare l'iterazione da capo dopo ogni epoca di addestramento.
Un modo semplice per ovviare al problema sarebbe stato raccogliere in una [`list`] l'iteratore creato da MongoDB, ma ciò caricherebbe l'intero dataset contemporaneamente in memoria, ricreando il problema riscontrato con NLTK.
Si è allora adottata una soluzione alternativa: creare una cache su disco composta un file per ciascun documento recuperato da MongoDB, in modo che quando Tensorflow necessita di ritornare al primo documento, possa farlo ritornando semplicemente al primo file.
Si è poi creata una classe `Caches` che si occupa di creare, gestire, ed eliminare le cache dei tre dataset nelle cartelle `./data/training`, `./data/validation` e `./data/evaluation`:
```python
@dataclasses.dataclass
class Caches:
"""
Container for the three generators that can create datasets.
### Creazione del modello base - `.analysis.tf_text.Tensorflow
Si è determinata una struttura comune che potesse essere usata per tutti i tipi di Sentiment Analyzer realizzati con Tensorflow:
```python
class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer, metaclass=abc.ABCMeta):
...
```
#### Formato del modello
Essa richiede che le sottoclassi usino un modello `tensorflow.keras.Sequential`, ovvero con un solo layer di neuroni in input e un solo layer di neuroni in output:
"Create the `tensorflow.keras.Sequential` model that should be executed by this sentiment analyzer."
raise NotImplementedError()
...
```
#### Conversione da-a tensori
Dato che i modelli di Tensorflow richiedono che ciascun dato fornito in input o emesso in output sia un'istanza di `tensorflow.Tensor`, le sottoclassi devono anche definire metodi per convertire le stelle delle recensioni in un equivalente `tensorflow.Tensor` e viceversa:
I modelli di deep learning di Tensorflow non sono in grado di processare direttamente stringhe; esse devono essere prima convertite in formato numerico.
All'inizializzazione, la struttura base crea un layer di tipo [`tensorflow.keras.layers.StringLookup`], che prende in input una lista di token e la converte in una lista di numeri interi, assegnando a ciascun token un numero diverso:
Prima dell'addestramento del modello, il layer deve essere adattato, ovvero deve costruire un vocabolario che associa ogni possibile termine ad un numero; qualsiasi token al di fuori da questo vocabolario verrà convertito in `0`.
Per esempio, `["ciao", "come", "stai", "?"]` potrebbe essere convertito in `[1, 2, 0, 3]` se il modello non è stato adattato con il token `"stai"`.
if len(self.history.epoch) <TENSORFLOW_EPOCHS.__wrapped__:
self.failed = True
raise TrainingFailedError()
else:
self.trained = True
...
```
##### Esplosione del gradiente
Il metodo `train` si occupa anche di gestire una situazione particolare: quella in cui l'errore del modello sul training set diventi `NaN` per via del fenomeno di [esplosione del gradiente].
Grazie al callback `tensorflow.keras.callbacks.TerminateOnNaN`, nel momento in cui viene riconosciuto che l'errore è diventato `NaN`, l'addestramento viene interrotto, e viene sollevato un `TrainingFailedError`.
Si è quindi aggiornato il main per gestire l'eccezione e ricominciare l'addestramento da capo qualora essa si verificasse:
```python
# Pseudo-codice non corrispondente al main finale
if __name__ == "__main__":
for sample_func in [sample_reviews_polar, sample_reviews_varied]:
for SentimentAnalyzer in [ThreeCheat, NLTKSentimentAnalyzer, ...]:
for Tokenizer in [PlainTokenizer, LowercaseTokenizer, PottsTokenizer, PottsTokenizerWithNegation, ...]:
runs = 0
successful_runs = 0
while True:
if runs >= MAXIMUM_RUNS or successful_runs >= TARGET_RUNS: