1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-25 09:14:19 +00:00

Fix VanillaSA to work with iterators

This commit is contained in:
Steffo 2023-02-03 02:10:00 +01:00
parent 767a6087a8
commit 4e1a9f842f
Signed by: steffo
GPG key ID: 2A24051445686895
12 changed files with 99 additions and 63 deletions

View file

@ -5,6 +5,8 @@
<option name="ignoredErrors"> <option name="ignoredErrors">
<list> <list>
<option value="E124" /> <option value="E124" />
<option value="E501" />
<option value="E221" />
</list> </list>
</option> </option>
</inspection_tool> </inspection_tool>

View file

@ -4,6 +4,9 @@
<option name="show" value="ASK" /> <option name="show" value="ASK" />
<option name="description" value="" /> <option name="description" value="" />
</component> </component>
<component name="PWA">
<option name="wasEnabledAtLeastOnce" value="true" />
</component>
<component name="ProjectRootManager" version="2" languageLevel="JDK_19"> <component name="ProjectRootManager" version="2" languageLevel="JDK_19">
<output url="file://$PROJECT_DIR$/out" /> <output url="file://$PROJECT_DIR$/out" />
</component> </component>

View file

@ -4,8 +4,10 @@
<option name="INTERPRETER_OPTIONS" value="" /> <option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" /> <option name="PARENT_ENVS" value="true" />
<envs> <envs>
<env name="DATA_SET_SIZE" value="10000" />
<env name="NLTK_DATA" value="./data/nltk" /> <env name="NLTK_DATA" value="./data/nltk" />
<env name="PYTHONUNBUFFERED" value="1" /> <env name="PYTHONUNBUFFERED" value="1" />
<env name="WORKING_SET_SIZE" value="1000000" />
</envs> </envs>
<option name="SDK_HOME" value="$PROJECT_DIR$/.venv/bin/python" /> <option name="SDK_HOME" value="$PROJECT_DIR$/.venv/bin/python" />
<option name="SDK_NAME" value="Poetry (unimore-bda-6)" /> <option name="SDK_NAME" value="Poetry (unimore-bda-6)" />

2
.vscode/launch.json vendored
View file

@ -9,7 +9,7 @@
"type": "python", "type": "python",
"request": "launch", "request": "launch",
"module": "unimore_bda_6", "module": "unimore_bda_6",
"justMyCode": true, "justMyCode": false,
"env": { "env": {
"NLTK_DATA": "./data/nltk", "NLTK_DATA": "./data/nltk",
"DATA_SET_SIZE": "250", "DATA_SET_SIZE": "250",

View file

@ -64,35 +64,28 @@ def varied_categorizer(rating: float) -> str:
def main(): def main():
with mongo_reviews_collection_from_config() as reviews: for dataset_func, categorizer in [
reviews_polar_training = dataset_polar(collection=reviews, amount=DATA_SET_SIZE.__wrapped__) (dataset_polar, polar_categorizer),
reviews_polar_evaluation = dataset_polar(collection=reviews, amount=DATA_SET_SIZE.__wrapped__) (dataset_varied, varied_categorizer),
]:
for tokenizer in all_tokenizers: for tokenizer in all_tokenizers:
log.info("Training polar model with %s tokenizer", tokenizer)
model = VanillaSA(extractor=review_vanilla_extractor, tokenizer=tokenizer, categorizer=polar_categorizer)
model.train(reviews_polar_training)
log.info("Evaluating polar model with %s tokenizer", tokenizer)
evaluation = model.evaluate(reviews_polar_evaluation)
log.info("Polar model with %s results: %s", tokenizer, evaluation)
del reviews_polar_training
del reviews_polar_evaluation
with mongo_reviews_collection_from_config() as reviews: with mongo_reviews_collection_from_config() as reviews:
reviews_varied_training = dataset_varied(collection=reviews, amount=DATA_SET_SIZE.__wrapped__) reviews_training = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
reviews_varied_evaluation = dataset_varied(collection=reviews, amount=DATA_SET_SIZE.__wrapped__) reviews_evaluation = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
for tokenizer in all_tokenizers: model = VanillaSA(extractor=review_vanilla_extractor, tokenizer=tokenizer, categorizer=categorizer)
log.info("Training varied model with %s tokenizer", tokenizer) log.info("Training model %s", model)
model = VanillaSA(extractor=review_vanilla_extractor, tokenizer=tokenizer, categorizer=varied_categorizer) model.train(reviews_training)
model.train(reviews_varied_training) log.info("Evaluating model %s", model)
log.info("Evaluating varied model with %s tokenizer", tokenizer) evaluation = model.evaluate(reviews_evaluation)
evaluation = model.evaluate(reviews_varied_evaluation) log.info("Results of model %s: %s", tokenizer, evaluation)
log.info("Varied model with %s results: %s", tokenizer, evaluation)
del reviews_varied_training try:
del reviews_varied_evaluation print("Model %s" % model)
while True:
print(model.use(input()))
except KeyboardInterrupt:
pass
if __name__ == "__main__": if __name__ == "__main__":

View file

@ -12,7 +12,7 @@ class BaseSA(metaclass=abc.ABCMeta):
""" """
@abc.abstractmethod @abc.abstractmethod
def train(self, training_set: list[tuple[Input, Category]]) -> None: def train(self, training_set: t.Iterable[tuple[Input, Category]]) -> None:
""" """
Train the analyzer with the given training set. Train the analyzer with the given training set.
""" """

View file

@ -4,11 +4,14 @@ import nltk.sentiment
import nltk.sentiment.util import nltk.sentiment.util
import logging import logging
import typing as t import typing as t
import itertools
from .base import Input, Category, BaseSA, AlreadyTrainedError, NotTrainedError from .base import Input, Category, BaseSA, AlreadyTrainedError, NotTrainedError
from ..log import count_passage
TokenBag = list[str] TokenBag = list[str]
IntermediateValue = t.TypeVar("IntermediateValue") IntermediateValue = t.TypeVar("IntermediateValue")
Features = dict[str, int]
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
@ -19,51 +22,72 @@ class VanillaSA(BaseSA):
A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK. A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK.
""" """
def __init__(self, *, extractor: t.Callable[[Input], tuple[str, Category]], tokenizer: t.Callable[[str], TokenBag], categorizer: t.Callable[[Input], Category]) -> None: def __init__(self, *, extractor: t.Callable[[Input], tuple[str, IntermediateValue]], tokenizer: t.Callable[[str], TokenBag], categorizer: t.Callable[[IntermediateValue], Category]) -> None:
super().__init__() super().__init__()
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer() self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
self.trained: bool = False self.trained: bool = False
self.extractor: t.Callable[[Input], tuple[str, IntermediateValue]] = extractor self.extractor: t.Callable[[Input], tuple[str, IntermediateValue]] = extractor
self.tokenizer: t.Callable[[str], TokenBag] = tokenizer self.tokenizer: t.Callable[[str], TokenBag] = tokenizer
self.categorizer: t.Callable[[IntermediateValue], Category] = categorizer self.categorizer: t.Callable[[IntermediateValue], Category] = categorizer
def __add_feature_unigrams(self, training_set: list[tuple[TokenBag, Category]]) -> None: def __repr__(self):
return f"<{self.__class__.__qualname__} {'trained' if self.trained else 'untrained'} tokenizer={self.extractor!r} categorizer={self.categorizer!r}>"
@staticmethod
def __data_to_tokenbag(data: tuple[TokenBag, Category]) -> TokenBag:
""" """
Add the `nltk.sentiment.util.extract_unigram_feats` feature to the model. Access the tokenbag of a data tuple.
""" """
all_words = self.model.all_words(training_set, labeled=True) return data[0]
def __add_feature_unigrams(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
"""
Register the `nltk.sentiment.util.extract_unigram_feats` feature extrator on the model.
"""
tokenbags = map(self.__data_to_tokenbag, dataset)
all_words = self.model.all_words(tokenbags, labeled=False)
unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4) unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4)
self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams) self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams)
def _add_features(self, training_set: list[tuple[TokenBag, Category]]): def _add_features(self, dataset: t.Iterator[tuple[TokenBag, Category]]):
""" """
Add new features to the sentiment analyzer. Register new feature extractors on the `.model`.
""" """
self.__add_feature_unigrams(training_set) self.__add_feature_unigrams(dataset)
def _train_from_dataset(self, dataset: list[tuple[TokenBag, Category]]) -> None: def __extract_features(self, data: tuple[TokenBag, Category]) -> tuple[Features, Category]:
"""
Convert a (TokenBag, Category) tuple to a (Features, Category) tuple.
Does not use `SentimentAnalyzer.apply_features` due to unexpected behaviour when using iterators.
"""
return self.model.extract_features(data[0]), data[1]
def _train_from_dataset(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
""" """
Train the model with the given training set. Train the model with the given training set.
""" """
if self.trained: if self.trained:
raise AlreadyTrainedError() raise AlreadyTrainedError()
self.__add_feature_unigrams(dataset) dataset_1, dataset_2 = itertools.tee(dataset, 2)
training_set_with_features = self.model.apply_features(dataset, labeled=True)
self.model.train(trainer=nltk.classify.NaiveBayesClassifier.train, training_set=training_set_with_features) self._add_features(dataset_1)
del dataset_1
dataset_2 = map(self.__extract_features, dataset_2)
self.model.classifier = nltk.classify.NaiveBayesClassifier.train(dataset_2)
self.trained = True self.trained = True
def _evaluate_from_dataset(self, dataset: list[tuple[TokenBag, Category]]) -> dict: def _evaluate_from_dataset(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> dict:
""" """
Perform a model evaluation with the given test set. Perform a model evaluation with the given test set.
""" """
if not self.trained: if not self.trained:
raise NotTrainedError() raise NotTrainedError()
test_set_with_features = self.model.apply_features(dataset, labeled=True) dataset_1 = map(self.__extract_features, dataset)
return self.model.evaluate(test_set_with_features) return self.model.evaluate(dataset_1)
def _use_from_tokenbag(self, tokens: TokenBag) -> Category: def _use_from_tokenbag(self, tokens: TokenBag) -> Category:
""" """
@ -75,17 +99,18 @@ class VanillaSA(BaseSA):
return self.model.classify(instance=tokens) return self.model.classify(instance=tokens)
def _extract_data(self, inp: Input) -> tuple[TokenBag, Category]: def _extract_data(self, inp: Input) -> tuple[TokenBag, Category]:
count_passage("processed_data", 100)
text, value = self.extractor(inp) text, value = self.extractor(inp)
return self.tokenizer(text), self.categorizer(value) return self.tokenizer(text), self.categorizer(value)
def _extract_dataset(self, inp: list[Input]) -> list[tuple[TokenBag, Category]]: def _extract_dataset(self, inp: t.Iterator[Input]) -> list[tuple[TokenBag, Category]]:
return list(map(self._extract_data, inp)) return map(self._extract_data, inp)
def train(self, training_set: list[Input]) -> None: def train(self, training_set: t.Iterator[Input]) -> None:
dataset = self._extract_dataset(training_set) dataset = self._extract_dataset(training_set)
self._train_from_dataset(dataset) self._train_from_dataset(dataset)
def evaluate(self, test_set: list[tuple[Input, Category]]) -> None: def evaluate(self, test_set: t.Iterator[Input]) -> dict:
dataset = self._extract_dataset(test_set) dataset = self._extract_dataset(test_set)
return self._evaluate_from_dataset(dataset) return self._evaluate_from_dataset(dataset)

View file

@ -4,7 +4,7 @@ import pymongo.collection
import contextlib import contextlib
import bson import bson
import logging import logging
import random import itertools
from .config import MONGO_HOST, MONGO_PORT, WORKING_SET_SIZE, DATA_SET_SIZE from .config import MONGO_HOST, MONGO_PORT, WORKING_SET_SIZE, DATA_SET_SIZE
@ -55,7 +55,7 @@ def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[Revi
yield collection yield collection
def sample_reviews(reviews: pymongo.collection.Collection, amount: int) -> t.Iterable[Review]: def sample_reviews(reviews: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
""" """
Get ``amount`` random reviews from the ``reviews`` collection. Get ``amount`` random reviews from the ``reviews`` collection.
""" """
@ -67,7 +67,7 @@ def sample_reviews(reviews: pymongo.collection.Collection, amount: int) -> t.Ite
]) ])
def sample_reviews_by_rating(reviews: pymongo.collection.Collection, rating: float, amount: int) -> t.Iterable[Review]: def sample_reviews_by_rating(reviews: pymongo.collection.Collection, rating: float, amount: int) -> t.Iterator[Review]:
""" """
Get ``amount`` random reviews with ``rating`` stars from the ``reviews`` collection. Get ``amount`` random reviews with ``rating`` stars from the ``reviews`` collection.
""" """
@ -80,7 +80,7 @@ def sample_reviews_by_rating(reviews: pymongo.collection.Collection, rating: flo
]) ])
def dataset_polar(collection: pymongo.collection.Collection, amount: int) -> list[Review]: def dataset_polar(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
""" """
Get a list of the same amount of 1-star and 5-star reviews. Get a list of the same amount of 1-star and 5-star reviews.
""" """
@ -91,12 +91,12 @@ def dataset_polar(collection: pymongo.collection.Collection, amount: int) -> lis
negative = sample_reviews_by_rating(collection, rating=1.0, amount=amount) negative = sample_reviews_by_rating(collection, rating=1.0, amount=amount)
# Randomness here does not matter, so just merge the lists # Randomness here does not matter, so just merge the lists
both = [*positive, *negative] both = itertools.chain(positive, negative)
return both return both
def dataset_varied(collection: pymongo.collection.Collection, amount: int) -> list[Review]: def dataset_varied(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
""" """
Get a list of the same amount of reviews for each rating. Get a list of the same amount of reviews for each rating.
""" """
@ -109,8 +109,7 @@ def dataset_varied(collection: pymongo.collection.Collection, amount: int) -> li
positive = sample_reviews_by_rating(collection, rating=4.0, amount=amount) positive = sample_reviews_by_rating(collection, rating=4.0, amount=amount)
great = sample_reviews_by_rating(collection, rating=5.0, amount=amount) great = sample_reviews_by_rating(collection, rating=5.0, amount=amount)
# Randomness here does not matter, so just merge the lists full = itertools.chain(terrible, negative, mixed, positive, great)
full = [*terrible, *negative, *mixed, *positive, *great]
return full return full
@ -122,4 +121,5 @@ __all__ = (
"sample_reviews", "sample_reviews",
"sample_reviews_by_rating", "sample_reviews_by_rating",
"dataset_polar", "dataset_polar",
"dataset_varied",
) )

View file

@ -1,3 +1,4 @@
import collections
import logging import logging
import coloredlogs import coloredlogs
@ -34,6 +35,16 @@ def install_log_handler(loggers: list[logging.Logger] = None):
log.debug("Installed custom log handler on: %s", logger) log.debug("Installed custom log handler on: %s", logger)
_passage_counts = collections.defaultdict(lambda: 0)
def count_passage(key: str, mod: int):
_passage_counts[key] += 1
if not _passage_counts[key] % mod:
log.debug("%s - %d calls", key, _passage_counts[key])
__all__ = ( __all__ = (
"install_log_handler", "install_log_handler",
"count_passage",
) )

View file

@ -3,8 +3,8 @@ from . import potts_based
all_tokenizers = [ all_tokenizers = [
nltk_based.tokenizer, nltk_based.nltk_tokenizer,
potts_based.tokenizer, potts_based.potts_tokenizer,
] ]

View file

@ -2,7 +2,7 @@ import nltk
import nltk.sentiment.util import nltk.sentiment.util
def tokenizer(text: str) -> list[str]: def nltk_tokenizer(text: str) -> list[str]:
""" """
Convert a text string into a list of tokens. Convert a text string into a list of tokens.
""" """
@ -12,5 +12,5 @@ def tokenizer(text: str) -> list[str]:
__all__ = ( __all__ = (
"tokenizer", "nltk_tokenizer",
) )

View file

@ -143,7 +143,7 @@ amp = "&amp;"
###################################################################### ######################################################################
def tokenizer(text: str) -> t.Iterable[str]: def potts_tokenizer(text: str) -> t.Iterable[str]:
""" """
Argument: s -- any string object Argument: s -- any string object
Value: a tokenize list of strings; conatenating this list returns the original string if preserve_case=False Value: a tokenize list of strings; conatenating this list returns the original string if preserve_case=False
@ -187,5 +187,5 @@ def __html2string(html: str) -> str:
__all__ = ( __all__ = (
"tokenizer", "potts_tokenizer",
) )