mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-21 15:34:18 +00:00
Some memory usage tweaks
This commit is contained in:
parent
35616d35c7
commit
61141248db
3 changed files with 69 additions and 64 deletions
1
.vscode/launch.json
vendored
1
.vscode/launch.json
vendored
|
@ -12,7 +12,6 @@
|
|||
"justMyCode": false,
|
||||
"env": {
|
||||
"NLTK_DATA": "./data/nltk",
|
||||
"DATA_SET_SIZE": "250",
|
||||
"XLA_FLAGS": "--xla_gpu_cuda_data_dir=/opt/cuda"
|
||||
},
|
||||
"cwd": "${workspaceFolder}",
|
||||
|
|
|
@ -31,88 +31,94 @@ def main():
|
|||
log.fatal("MongoDB database is not available, exiting...")
|
||||
exit(1)
|
||||
|
||||
reviews = reviews_collection(db)
|
||||
for sample_func in [
|
||||
sample_reviews_polar,
|
||||
sample_reviews_varied,
|
||||
]:
|
||||
|
||||
for sample_func in [
|
||||
sample_reviews_polar,
|
||||
sample_reviews_varied,
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}")
|
||||
slog.debug("Selected sample_func: %s", sample_func.__name__)
|
||||
|
||||
for SentimentAnalyzer in [
|
||||
# ThreeCheat,
|
||||
NLTKSentimentAnalyzer,
|
||||
TensorflowPolarSentimentAnalyzer,
|
||||
TensorflowCategorySentimentAnalyzer,
|
||||
]:
|
||||
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}")
|
||||
slog.debug("Selected sample_func: %s", sample_func.__name__)
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}")
|
||||
slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__)
|
||||
|
||||
for SentimentAnalyzer in [
|
||||
# ThreeCheat,
|
||||
NLTKSentimentAnalyzer,
|
||||
TensorflowPolarSentimentAnalyzer,
|
||||
TensorflowCategorySentimentAnalyzer,
|
||||
for Tokenizer in [
|
||||
PlainTokenizer,
|
||||
LowercaseTokenizer,
|
||||
NLTKWordTokenizer,
|
||||
PottsTokenizer,
|
||||
PottsTokenizerWithNegation,
|
||||
HuggingBertTokenizer,
|
||||
]:
|
||||
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}")
|
||||
slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__)
|
||||
log.debug("Running garbage collection...")
|
||||
garbage_count = gc.collect()
|
||||
log.debug("Collected %d pieces of garbage!", garbage_count)
|
||||
|
||||
for Tokenizer in [
|
||||
PlainTokenizer,
|
||||
LowercaseTokenizer,
|
||||
NLTKWordTokenizer,
|
||||
PottsTokenizer,
|
||||
PottsTokenizerWithNegation,
|
||||
HuggingBertTokenizer,
|
||||
]:
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
||||
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
|
||||
|
||||
log.debug("Running garbage collection...")
|
||||
garbage_count = gc.collect()
|
||||
log.debug("Collected %d pieces of garbage!", garbage_count)
|
||||
runs = 0
|
||||
successful_runs = 0
|
||||
cumulative_evaluation_results = EvaluationResults()
|
||||
|
||||
while True:
|
||||
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
||||
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
|
||||
|
||||
runs = 0
|
||||
successful_runs = 0
|
||||
cumulative_evaluation_results = EvaluationResults()
|
||||
if successful_runs >= TARGET_RUNS.__wrapped__:
|
||||
slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__)
|
||||
break
|
||||
|
||||
while True:
|
||||
if runs >= MAXIMUM_RUNS.__wrapped__:
|
||||
slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__)
|
||||
break
|
||||
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
||||
runs += 1
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}")
|
||||
slog.debug("Run #%d", runs)
|
||||
|
||||
if successful_runs >= TARGET_RUNS.__wrapped__:
|
||||
slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__)
|
||||
break
|
||||
try:
|
||||
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
||||
sa = SentimentAnalyzer(tokenizer=Tokenizer())
|
||||
except TypeError:
|
||||
slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
||||
break
|
||||
|
||||
if runs >= MAXIMUM_RUNS.__wrapped__:
|
||||
slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__)
|
||||
break
|
||||
|
||||
runs += 1
|
||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}")
|
||||
slog.debug("Run #%d", runs)
|
||||
with mongo_client_from_config() as db:
|
||||
reviews = reviews_collection(db)
|
||||
datasets_cm = Caches.from_database_samples(collection=reviews, sample_func=sample_func)
|
||||
datasets = datasets_cm.__enter__()
|
||||
|
||||
try:
|
||||
try:
|
||||
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
||||
sa = SentimentAnalyzer(tokenizer=Tokenizer())
|
||||
except TypeError:
|
||||
slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
||||
slog.info("Training sentiment analyzer: %s", sa)
|
||||
sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation)
|
||||
|
||||
except TrainingFailedError:
|
||||
slog.error("Training failed, trying again with a different dataset...")
|
||||
continue
|
||||
|
||||
else:
|
||||
slog.info("Training succeeded!")
|
||||
slog.info("Evaluating sentiment analyzer: %s", sa)
|
||||
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
|
||||
slog.info("Evaluation results: %s", evaluation_results)
|
||||
successful_runs += 1
|
||||
cumulative_evaluation_results += evaluation_results
|
||||
break
|
||||
finally:
|
||||
datasets_cm.__exit__()
|
||||
|
||||
with Caches.from_database_samples(collection=reviews, sample_func=sample_func) as datasets:
|
||||
try:
|
||||
slog.info("Training sentiment analyzer: %s", sa)
|
||||
sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation)
|
||||
|
||||
except TrainingFailedError:
|
||||
slog.error("Training failed, trying again with a different dataset...")
|
||||
continue
|
||||
|
||||
else:
|
||||
slog.info("Training succeeded!")
|
||||
slog.info("Evaluating sentiment analyzer: %s", sa)
|
||||
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
|
||||
slog.info("Evaluation results: %s", evaluation_results)
|
||||
successful_runs += 1
|
||||
cumulative_evaluation_results += evaluation_results
|
||||
break
|
||||
|
||||
slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results)
|
||||
slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -23,7 +23,7 @@ def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]:
|
|||
|
||||
yield client
|
||||
|
||||
log.info("Closing connection to MongoDB...")
|
||||
log.debug("Closing connection to MongoDB...")
|
||||
client.close()
|
||||
log.debug("Closed connection to MongoDB!")
|
||||
|
||||
|
|
Loading…
Reference in a new issue