1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-22 07:54:19 +00:00

New version working nicely

This commit is contained in:
Steffo 2023-02-03 23:27:44 +01:00
parent 379cbdd13a
commit 6ef81c1c19
Signed by: steffo
GPG key ID: 2A24051445686895
15 changed files with 371 additions and 316 deletions

View file

@ -1,12 +1,44 @@
<component name="InspectionProjectProfileManager"> <component name="InspectionProjectProfileManager">
<profile version="1.0"> <profile version="1.0">
<option name="myName" value="Project Default" /> <option name="myName" value="Project Default" />
<inspection_tool class="HttpUrlsUsage" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredUrls">
<list>
<option value="http://localhost" />
<option value="http://127.0.0.1" />
<option value="http://0.0.0.0" />
<option value="http://www.w3.org/" />
<option value="http://json-schema.org/draft" />
<option value="http://java.sun.com/" />
<option value="http://xmlns.jcp.org/" />
<option value="http://javafx.com/javafx/" />
<option value="http://javafx.com/fxml" />
<option value="http://maven.apache.org/xsd/" />
<option value="http://maven.apache.org/POM/" />
<option value="http://www.springframework.org/schema/" />
<option value="http://www.springframework.org/tags" />
<option value="http://www.springframework.org/security/tags" />
<option value="http://www.thymeleaf.org" />
<option value="http://www.jboss.org/j2ee/schema/" />
<option value="http://www.jboss.com/xml/ns/" />
<option value="http://www.ibm.com/webservices/xsd" />
<option value="http://activemq.apache.org/schema/" />
<option value="http://schema.cloudfoundry.org/spring/" />
<option value="http://schemas.xmlsoap.org/" />
<option value="http://cxf.apache.org/schemas/" />
<option value="http://primefaces.org/ui" />
<option value="http://tiles.apache.org/" />
<option value="http://sentiment.christopherpotts.net" />
</list>
</option>
</inspection_tool>
<inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true"> <inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors"> <option name="ignoredErrors">
<list> <list>
<option value="E124" /> <option value="E124" />
<option value="E501" /> <option value="E501" />
<option value="E221" /> <option value="E221" />
<option value="E203" />
</list> </list>
</option> </option>
</inspection_tool> </inspection_tool>

View file

@ -76,11 +76,11 @@ $ mongosh < ./data/scripts/index-db.js
<!-- TODO --> <!-- TODO -->
## `base`: Costruzione dell'impalcatura necessaria al confronto ## `.analysis.base`: Costruzione dell'impalcatura necessaria al confronto
<!-- TODO --> <!-- TODO -->
## `vanilla`: Ricostruzione e ottimizzazione del modello basato su `nltk.sentiment` realizzato a lezione ## `.analysis.nltk_sentiment`: Ricostruzione e ottimizzazione del modello basato su `nltk.sentiment` realizzato a lezione
Per avere un modello baseline con cui effettuare un confronto, si è ricostruito un modello basato su `nltk.sentiment` ispirato a quello realizzato a lezione. Per avere un modello baseline con cui effettuare un confronto, si è ricostruito un modello basato su `nltk.sentiment` ispirato a quello realizzato a lezione.

View file

@ -1,91 +1,38 @@
import logging import logging
from .config import config, DATA_SET_SIZE from .config import config, DATA_SET_SIZE
from .database import Review, mongo_reviews_collection_from_config, dataset_polar, dataset_varied from .database import mongo_reviews_collection_from_config, polar_dataset, varied_dataset
from .analysis.vanilla import VanillaSA from .analysis.nltk_sentiment import NLTKSentimentAnalyzer
from .tokenization import all_tokenizers from .tokenizer import NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation
from .log import install_log_handler from .log import install_log_handler
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
def review_vanilla_extractor(review: Review) -> tuple[str, float]:
"""
Extract review text and rating from a `Review`.
"""
return review["reviewText"], review["overall"]
def polar_categorizer(rating: float) -> str:
"""
Return the polar label corresponding to the given rating.
Possible categories are:
* negative (1.0, 2.0)
* positive (3.0, 4.0, 5.0)
* unknown (everything else)
"""
match rating:
case 1.0 | 2.0:
return "negative"
case 3.0 | 4.0 | 5.0:
return "positive"
case _:
return "unknown"
def varied_categorizer(rating: float) -> str:
"""
Return the "stars" label corresponding to the given rating.
Possible categories are:
* terrible (1.0)
* negative (2.0)
* mixed (3.0)
* positive (4.0)
* great (5.0)
* unknown (everything else)
"""
match rating:
case 1.0:
return "terrible"
case 2.0:
return "negative"
case 3.0:
return "mixed"
case 4.0:
return "positive"
case 5.0:
return "great"
case _:
return "unknown"
def main(): def main():
for dataset_func, categorizer in [ for dataset_func in [polar_dataset, varied_dataset]:
(dataset_polar, polar_categorizer), for SentimentAnalyzer in [NLTKSentimentAnalyzer]:
(dataset_varied, varied_categorizer), for Tokenizer in [NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation]:
]: tokenizer = Tokenizer()
for tokenizer in all_tokenizers: model = SentimentAnalyzer(tokenizer=tokenizer)
with mongo_reviews_collection_from_config() as reviews:
reviews_training = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
reviews_evaluation = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
model = VanillaSA(extractor=review_vanilla_extractor, tokenizer=tokenizer, categorizer=categorizer) with mongo_reviews_collection_from_config() as reviews:
log.info("Training model %s", model) reviews_training = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
model.train(reviews_training) reviews_evaluation = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
log.info("Evaluating model %s", model)
evaluation = model.evaluate(reviews_evaluation)
log.info("Results of model %s: %s", tokenizer, evaluation)
try: log.info("Training model %s", model)
print("Model %s" % model) model.train(reviews_training)
while inp := input(): log.info("Evaluating model %s", model)
print(model.use(inp)) correct, evaluated = model.evaluate(reviews_evaluation)
except KeyboardInterrupt: log.info("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
pass
# try:
# print("Manual testing for %s" % model)
# print("Input an empty string to continue to the next model.")
# while inp := input():
# print(model.use(inp))
# except KeyboardInterrupt:
# pass
if __name__ == "__main__": if __name__ == "__main__":

View file

@ -1,6 +1,8 @@
from .vanilla import BaseSA from .base import BaseSentimentAnalyzer
from .nltk_sentiment import NLTKSentimentAnalyzer
__all__ = ( __all__ = (
"BaseSA", "BaseSentimentAnalyzer",
"NLTKSentimentAnalyzer",
) )

View file

@ -1,47 +1,49 @@
import abc import abc
import typing as t import logging
from ..database import DataSet, Text, Category
log = logging.getLogger(__name__)
Input = t.TypeVar("Input") class BaseSentimentAnalyzer(metaclass=abc.ABCMeta):
Category = t.TypeVar("Category")
class BaseSA(metaclass=abc.ABCMeta):
""" """
Abstract base class for sentiment analyzers implemented in this project. Abstract base class for sentiment analyzers implemented in this project.
""" """
@abc.abstractmethod @abc.abstractmethod
def train(self, training_set: t.Iterable[tuple[Input, Category]]) -> None: def train(self, training_set: DataSet) -> None:
""" """
Train the analyzer with the given training set. Train the analyzer with the given training dataset.
""" """
raise NotImplementedError() raise NotImplementedError()
def evaluate(self, test_set: DataSet) -> tuple[int, int]:
"""
Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category.
Returns a tuple with the number of correct results and the number of evaluated results.
"""
evaluated: int = 0
correct: int = 0
for text, expected_category in test_set:
resulting_category = self.use(text)
evaluated += 1
correct += 1 if resulting_category == expected_category else 0
if not evaluated % 100:
log.debug("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
return correct, evaluated
@abc.abstractmethod @abc.abstractmethod
def use(self, text: Input) -> Category: def use(self, text: Text) -> Category:
""" """
Use the sentiment analyzer. Run the model on the given input.
""" """
raise NotImplementedError() raise NotImplementedError()
class AlreadyTrainedError(Exception):
"""
This model has already been trained and cannot be trained again.
"""
class NotTrainedError(Exception):
"""
This model has not been trained yet.
"""
__all__ = ( __all__ = (
"Input", "BaseSentimentAnalyzer",
"Category",
"BaseSA",
"AlreadyTrainedError",
"NotTrainedError",
) )

View file

@ -0,0 +1,123 @@
import nltk
import nltk.classify
import nltk.sentiment
import nltk.sentiment.util
import logging
import typing as t
import itertools
from ..database import Text, Category, DataTuple, DataSet
from .base import BaseSentimentAnalyzer
from ..log import count_passage
from ..tokenizer import BaseTokenizer
log = logging.getLogger(__name__)
TokenBag = list[str]
Features = dict[str, int]
class AlreadyTrainedError(Exception):
"""
This model has already been trained and cannot be trained again.
"""
class NotTrainedError(Exception):
"""
This model has not been trained yet.
"""
class NLTKSentimentAnalyzer(BaseSentimentAnalyzer):
"""
A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK.
"""
def __init__(self, *, tokenizer: BaseTokenizer) -> None:
super().__init__()
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
self.trained: bool = False
self.tokenizer: BaseTokenizer = tokenizer
def __repr__(self):
return f"<{self.__class__.__qualname__} {'trained' if self.trained else 'untrained'} tokenizer={self.tokenizer!r}>"
def __tokenize_datatuple(self, datatuple: DataTuple) -> tuple[TokenBag, Category]:
"""
Convert the `Text` of a `DataTuple` to a `TokenBag`.
"""
count_passage(log, "tokenize_datatuple", 100)
return self.tokenizer.tokenize(datatuple[0]), datatuple[1]
def _add_feature_unigrams(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
"""
Register the `nltk.sentiment.util.extract_unigram_feats` feature extrator on the model.
"""
# Ignore the category and only access the tokens
tokenbags = map(lambda d: d[0], dataset)
# Get all words in the documents
all_words = self.model.all_words(tokenbags, labeled=False)
# Create unigram `contains(*)` features from the previously gathered words
unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4)
# Add the feature extractor to the model
self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams)
def _add_feature_extractors(self, dataset: t.Iterator[tuple[TokenBag, Category]]):
"""
Register new feature extractors on the `.model`.
"""
# Add the unigrams feature
self._add_feature_unigrams(dataset)
def __extract_features(self, data: tuple[TokenBag, Category]) -> tuple[Features, Category]:
"""
Convert a (TokenBag, Category) tuple to a (Features, Category) tuple.
Does not use `SentimentAnalyzer.apply_features` due to unexpected behaviour when using iterators.
"""
count_passage(log, "extract_features", 100)
return self.model.extract_features(data[0]), data[1]
def train(self, dataset: DataSet) -> None:
# Forbid retraining the model
if self.trained:
raise AlreadyTrainedError()
# Tokenize the dataset
dataset: t.Iterator[tuple[TokenBag, Category]] = map(self.__tokenize_datatuple, dataset)
# Cleanly duplicate the dataset iterator
# Reduce average memory footprint, but not maximum
dataset_1, dataset_2 = itertools.tee(dataset, 2)
dataset_1: t.Iterator[tuple[TokenBag, Category]]
dataset_2: t.Iterator[tuple[TokenBag, Category]]
# Add the feature extractors to the model
self._add_feature_extractors(dataset_1)
del dataset_1 # Delete exausted iterator
# Extract features from the dataset
dataset_2: t.Iterator[tuple[Features, Category]] = map(self.__extract_features, dataset_2)
# Train the classifier with the extracted features and category
self.model.classifier = nltk.classify.NaiveBayesClassifier.train(dataset_2)
# Toggle the trained flag
self.trained = True
def use(self, text: Text) -> Category:
# Require the model to be trained
if not self.trained:
raise NotTrainedError()
# Tokenize the input
tokens = self.tokenizer.tokenize(text)
# Run the classification method
return self.model.classify(instance=tokens)
__all__ = (
"NLTKSentimentAnalyzer",
)

View file

@ -1,126 +0,0 @@
import nltk
import nltk.classify
import nltk.sentiment
import nltk.sentiment.util
import logging
import typing as t
import itertools
from .base import Input, Category, BaseSA, AlreadyTrainedError, NotTrainedError
from ..log import count_passage
TokenBag = list[str]
IntermediateValue = t.TypeVar("IntermediateValue")
Features = dict[str, int]
log = logging.getLogger(__name__)
class VanillaSA(BaseSA):
"""
A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK.
"""
def __init__(self, *, extractor: t.Callable[[Input], tuple[str, IntermediateValue]], tokenizer: t.Callable[[str], TokenBag], categorizer: t.Callable[[IntermediateValue], Category]) -> None:
super().__init__()
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
self.trained: bool = False
self.extractor: t.Callable[[Input], tuple[str, IntermediateValue]] = extractor
self.tokenizer: t.Callable[[str], TokenBag] = tokenizer
self.categorizer: t.Callable[[IntermediateValue], Category] = categorizer
def __repr__(self):
return f"<{self.__class__.__qualname__} {'trained' if self.trained else 'untrained'} tokenizer={self.extractor!r} categorizer={self.categorizer!r}>"
@staticmethod
def __data_to_tokenbag(data: tuple[TokenBag, Category]) -> TokenBag:
"""
Access the tokenbag of a data tuple.
"""
return data[0]
def __add_feature_unigrams(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
"""
Register the `nltk.sentiment.util.extract_unigram_feats` feature extrator on the model.
"""
tokenbags = map(self.__data_to_tokenbag, dataset)
all_words = self.model.all_words(tokenbags, labeled=False)
unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4)
self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams)
def _add_features(self, dataset: t.Iterator[tuple[TokenBag, Category]]):
"""
Register new feature extractors on the `.model`.
"""
self.__add_feature_unigrams(dataset)
def __extract_features(self, data: tuple[TokenBag, Category]) -> tuple[Features, Category]:
"""
Convert a (TokenBag, Category) tuple to a (Features, Category) tuple.
Does not use `SentimentAnalyzer.apply_features` due to unexpected behaviour when using iterators.
"""
count_passage("processed_features", 100)
return self.model.extract_features(data[0]), data[1]
def _train_from_dataset(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
"""
Train the model with the given training set.
"""
if self.trained:
raise AlreadyTrainedError()
dataset_1, dataset_2 = itertools.tee(dataset, 2)
self._add_features(dataset_1)
del dataset_1
dataset_2 = map(self.__extract_features, dataset_2)
self.model.classifier = nltk.classify.NaiveBayesClassifier.train(dataset_2)
self.trained = True
def _evaluate_from_dataset(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> dict:
"""
Perform a model evaluation with the given test set.
"""
if not self.trained:
raise NotTrainedError()
dataset_1 = map(self.__extract_features, dataset)
# FIXME: This won't work with streams :(
return self.model.evaluate(list(dataset_1))
def _use_from_tokenbag(self, tokens: TokenBag) -> Category:
"""
Categorize the given token bag.
"""
if not self.trained:
raise NotTrainedError()
return self.model.classify(instance=tokens)
def _extract_data(self, inp: Input) -> tuple[TokenBag, Category]:
count_passage("processed_data", 100)
text, value = self.extractor(inp)
return self.tokenizer(text), self.categorizer(value)
def _extract_dataset(self, inp: t.Iterator[Input]) -> list[tuple[TokenBag, Category]]:
return map(self._extract_data, inp)
def train(self, training_set: t.Iterator[Input]) -> None:
dataset = self._extract_dataset(training_set)
self._train_from_dataset(dataset)
def evaluate(self, test_set: t.Iterator[Input]) -> dict:
dataset = self._extract_dataset(test_set)
return self._evaluate_from_dataset(dataset)
def use(self, text: Input) -> Category:
tokens = self.tokenizer(text)
return self._use_from_tokenbag(tokens)
__all__ = (
"VanillaSA",
)

View file

@ -6,7 +6,7 @@ import bson
import logging import logging
import itertools import itertools
from .config import MONGO_HOST, MONGO_PORT, WORKING_SET_SIZE, DATA_SET_SIZE from .config import MONGO_HOST, MONGO_PORT, WORKING_SET_SIZE
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
@ -24,6 +24,12 @@ class Review(t.TypedDict):
reviewTime: str reviewTime: str
Text = str
Category = str
DataTuple = tuple[Text, Category]
DataSet = t.Iterable[DataTuple]
@contextlib.contextmanager @contextlib.contextmanager
def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]: def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]:
""" """
@ -80,7 +86,40 @@ def sample_reviews_by_rating(reviews: pymongo.collection.Collection, rating: flo
]) ])
def dataset_polar(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]: def review_to_datatuple(review: Review) -> tuple[Text, Category]:
"""
Return the label corresponding to the given review.
Possible categories are:
* terrible (1.0)
* negative (2.0)
* mixed (3.0)
* positive (4.0)
* great (5.0)
* unknown (everything else)
"""
text = review["reviewText"]
rating = review["overall"]
match rating:
case 1.0:
category = "terrible"
case 2.0:
category = "negative"
case 3.0:
category = "mixed"
case 4.0:
category = "positive"
case 5.0:
category = "great"
case _:
category = "unknown"
return text, category
def polar_dataset(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[DataTuple]:
""" """
Get a list of the same amount of 1-star and 5-star reviews. Get a list of the same amount of 1-star and 5-star reviews.
""" """
@ -90,13 +129,16 @@ def dataset_polar(collection: pymongo.collection.Collection, amount: int) -> t.I
positive = sample_reviews_by_rating(collection, rating=5.0, amount=amount) positive = sample_reviews_by_rating(collection, rating=5.0, amount=amount)
negative = sample_reviews_by_rating(collection, rating=1.0, amount=amount) negative = sample_reviews_by_rating(collection, rating=1.0, amount=amount)
# Randomness here does not matter, so just merge the lists # Chain the iterators
both = itertools.chain(positive, negative) full = itertools.chain(positive, negative)
return both # Convert reviews to datatuples
full = map(review_to_datatuple, full)
return full
def dataset_varied(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]: def varied_dataset(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[DataTuple]:
""" """
Get a list of the same amount of reviews for each rating. Get a list of the same amount of reviews for each rating.
""" """
@ -109,17 +151,25 @@ def dataset_varied(collection: pymongo.collection.Collection, amount: int) -> t.
positive = sample_reviews_by_rating(collection, rating=4.0, amount=amount) positive = sample_reviews_by_rating(collection, rating=4.0, amount=amount)
great = sample_reviews_by_rating(collection, rating=5.0, amount=amount) great = sample_reviews_by_rating(collection, rating=5.0, amount=amount)
# Chain the iterators
full = itertools.chain(terrible, negative, mixed, positive, great) full = itertools.chain(terrible, negative, mixed, positive, great)
# Convert reviews to datatuples
full = map(review_to_datatuple, full)
return full return full
__all__ = ( __all__ = (
"Review", "Review",
"Text",
"Category",
"DataTuple",
"DataSet",
"mongo_client_from_config", "mongo_client_from_config",
"mongo_reviews_collection_from_config", "mongo_reviews_collection_from_config",
"sample_reviews", "sample_reviews",
"sample_reviews_by_rating", "sample_reviews_by_rating",
"dataset_polar", "polar_dataset",
"dataset_varied", "varied_dataset",
) )

View file

@ -2,7 +2,7 @@ import collections
import logging import logging
import coloredlogs import coloredlogs
log = logging.getLogger(__name__) this_log = logging.getLogger(__name__)
def install_log_handler(loggers: list[logging.Logger] = None): def install_log_handler(loggers: list[logging.Logger] = None):
@ -32,13 +32,13 @@ def install_log_handler(loggers: list[logging.Logger] = None):
), ),
isatty=True, isatty=True,
) )
log.debug("Installed custom log handler on: %s", logger) this_log.debug("Installed custom log handler on: %s", logger)
_passage_counts = collections.defaultdict(lambda: 0) _passage_counts = collections.defaultdict(lambda: 0)
def count_passage(key: str, mod: int): def count_passage(log: logging.Logger, key: str, mod: int):
_passage_counts[key] += 1 _passage_counts[key] += 1
if not _passage_counts[key] % mod: if not _passage_counts[key] % mod:
log.debug("%s - %d calls", key, _passage_counts[key]) log.debug("%s - %d calls", key, _passage_counts[key])

View file

@ -1,15 +0,0 @@
from . import nltk_based
from . import potts_based
all_tokenizers = [
nltk_based.nltk_tokenizer,
potts_based.potts_tokenizer,
]
__all__ = (
"nltk_based",
"potts_based",
"all_tokenizers",
)

View file

@ -1,16 +0,0 @@
import nltk
import nltk.sentiment.util
def nltk_tokenizer(text: str) -> list[str]:
"""
Convert a text string into a list of tokens.
"""
tokens = nltk.word_tokenize(text)
nltk.sentiment.util.mark_negation(tokens, shallow=True)
return tokens
__all__ = (
"nltk_tokenizer",
)

View file

@ -0,0 +1,10 @@
from .base import BaseTokenizer
from .nltk_word_tokenize import NLTKWordTokenizer
from .potts import PottsTokenizer, PottsTokenizerWithNegation
__all__ = (
"BaseTokenizer",
"NLTKWordTokenizer",
"PottsTokenizer",
)

View file

@ -0,0 +1,17 @@
import abc
class BaseTokenizer(metaclass=abc.ABCMeta):
"""
The base for all tokenizers in this project.
"""
def __repr__(self):
return f"{self.__class__.__qualname__}()"
@abc.abstractmethod
def tokenize(self, text: str) -> list[str]:
"""
Convert a text string into a list of tokens.
"""
raise NotImplementedError()

View file

@ -0,0 +1,21 @@
import nltk
import nltk.sentiment.util
import typing as t
from .base import BaseTokenizer
class NLTKWordTokenizer(BaseTokenizer):
"""
Tokenizer based on `nltk.word_tokenize`.
"""
def tokenize(self, text: str) -> t.Iterable[str]:
tokens = nltk.word_tokenize(text)
nltk.sentiment.util.mark_negation(tokens, shallow=True)
return tokens
__all__ = (
"NLTKWordTokenizer",
)

View file

@ -1,8 +1,4 @@
""" """
This file is a vendored version of `Christopher Potts' tokenizer <http://sentiment.christopherpotts.net/tokenizing.html>`_, which the project's specifications require to use.
It has been altered to be used with Python 3.10, but the code is mostly the same.
========================= =========================
Original module docstring Original module docstring
========================= =========================
@ -54,6 +50,9 @@ __email__ = "See the author's website"
import re import re
import html.entities import html.entities
import typing as t import typing as t
import nltk.sentiment.util
from .base import BaseTokenizer
###################################################################### ######################################################################
# The following strings are components in the regular expression # The following strings are components in the regular expression
@ -143,49 +142,58 @@ amp = "&amp;"
###################################################################### ######################################################################
def potts_tokenizer(text: str) -> t.Iterable[str]: class PottsTokenizer(BaseTokenizer):
""" """
Argument: s -- any string object Tokenizer based on `Christopher Potts' tokenizer <http://sentiment.christopherpotts.net/tokenizing.html>`_.
Value: a tokenize list of strings; conatenating this list returns the original string if preserve_case=False
""" """
# Fix HTML character entitites:
s = __html2string(text)
# Tokenize:
words = word_re.findall(s)
# Possible alter the case, but avoid changing emoticons like :D into :d:
words = map((lambda x : x if emoticon_re.search(x) else x.lower()), words)
# Return the results
return words
@staticmethod
def __html2string(html: str) -> str: def __html2string(s: str) -> str:
""" """
Internal metod that seeks to replace all the HTML entities in Internal metod that seeks to replace all the HTML entities in
s with their corresponding unicode characters. s with their corresponding unicode characters.
""" """
# First the digits: # First the digits:
ents = set(html_entity_digit_re.findall(html)) ents = set(html_entity_digit_re.findall(s))
if len(ents) > 0: if len(ents) > 0:
for ent in ents:
entnum = ent[2:-1]
try:
entnum = int(entnum)
s = s.replace(ent, chr(entnum))
except (ValueError, KeyError):
pass
# Now the alpha versions:
ents = set(html_entity_alpha_re.findall(s))
ents = filter((lambda x : x != amp), ents)
for ent in ents: for ent in ents:
entnum = ent[2:-1] entname = ent[1:-1]
try: try:
entnum = int(entnum) s = s.replace(ent, chr(html.entities.name2codepoint[entname]))
html = html.replace(ent, chr(entnum)) except (ValueError, KeyError):
except:
pass pass
# Now the alpha versions: s = s.replace(amp, " and ")
ents = set(html_entity_alpha_re.findall(html)) return s
ents = filter((lambda x : x != amp), ents)
for ent in ents: def tokenize(self, text: str) -> t.Iterable[str]:
entname = ent[1:-1] # Fix HTML character entitites:
try: s = self.__html2string(text)
html = html.replace(ent, chr(html.entities.name2codepoint[entname])) # Tokenize:
except: words = word_re.findall(s)
pass # Possible alter the case, but avoid changing emoticons like :D into :d:
html = html.replace(amp, " and ") words = list(map(lambda x: x if emoticon_re.search(x) else x.lower(), words))
return html # Return the results
return words
class PottsTokenizerWithNegation(PottsTokenizer):
def tokenize(self, text: str) -> t.Iterable[str]:
words = super().tokenize(text)
nltk.sentiment.util.mark_negation(words, shallow=True)
return words
__all__ = ( __all__ = (
"potts_tokenizer", "PottsTokenizer",
"PottsTokenizerWithNegation",
) )