mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-21 15:34:18 +00:00
Write results to a ./data/logs/results.tsv
file as well
This commit is contained in:
parent
b4cc6f8707
commit
8d831afbe3
2 changed files with 93 additions and 78 deletions
|
@ -24,101 +24,112 @@ def main():
|
||||||
log.debug("Ensuring there are no leftover caches...")
|
log.debug("Ensuring there are no leftover caches...")
|
||||||
Caches.ensure_clean()
|
Caches.ensure_clean()
|
||||||
|
|
||||||
with mongo_client_from_config() as db:
|
with open("./data/logs/results.tsv", "w") as file:
|
||||||
try:
|
file.write("function\tanalyzer\ttokenizer\trun no\tmean absolute error\tmean squared error\tperfects\trecall 1\trecall 2\trecall 3\trecall 4\trecall 5\tprecision 1\tprecision 2\tprecision 3\tprecision 4\tprecision 5\n")
|
||||||
db.admin.command("ping")
|
|
||||||
except pymongo.errors.ServerSelectionTimeoutError:
|
|
||||||
log.fatal("MongoDB database is not available, exiting...")
|
|
||||||
exit(1)
|
|
||||||
|
|
||||||
for sample_func in [
|
with mongo_client_from_config() as db:
|
||||||
sample_reviews_polar,
|
try:
|
||||||
sample_reviews_varied,
|
db.admin.command("ping")
|
||||||
]:
|
except pymongo.errors.ServerSelectionTimeoutError:
|
||||||
|
log.fatal("MongoDB database is not available, exiting...")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}")
|
for sample_func in [
|
||||||
slog.debug("Selected sample_func: %s", sample_func.__name__)
|
sample_reviews_polar,
|
||||||
|
sample_reviews_varied,
|
||||||
for SentimentAnalyzer in [
|
|
||||||
ThreeCheat,
|
|
||||||
NLTKSentimentAnalyzer,
|
|
||||||
TensorflowPolarSentimentAnalyzer,
|
|
||||||
TensorflowCategorySentimentAnalyzer,
|
|
||||||
]:
|
]:
|
||||||
|
|
||||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}")
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}")
|
||||||
slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__)
|
slog.debug("Selected sample_func: %s", sample_func.__name__)
|
||||||
|
|
||||||
for Tokenizer in [
|
for SentimentAnalyzer in [
|
||||||
PlainTokenizer,
|
ThreeCheat,
|
||||||
LowercaseTokenizer,
|
NLTKSentimentAnalyzer,
|
||||||
NLTKWordTokenizer,
|
TensorflowPolarSentimentAnalyzer,
|
||||||
PottsTokenizer,
|
TensorflowCategorySentimentAnalyzer,
|
||||||
PottsTokenizerWithNegation,
|
|
||||||
HuggingBertTokenizer,
|
|
||||||
]:
|
]:
|
||||||
|
|
||||||
log.debug("Running garbage collection...")
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}")
|
||||||
garbage_count = gc.collect()
|
slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__)
|
||||||
log.debug("Collected %d pieces of garbage!", garbage_count)
|
|
||||||
|
|
||||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
for Tokenizer in [
|
||||||
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
|
PlainTokenizer,
|
||||||
|
LowercaseTokenizer,
|
||||||
|
NLTKWordTokenizer,
|
||||||
|
PottsTokenizer,
|
||||||
|
PottsTokenizerWithNegation,
|
||||||
|
HuggingBertTokenizer,
|
||||||
|
]:
|
||||||
|
|
||||||
runs = 0
|
log.debug("Running garbage collection...")
|
||||||
successful_runs = 0
|
garbage_count = gc.collect()
|
||||||
cumulative_evaluation_results = EvaluationResults()
|
log.debug("Collected %d pieces of garbage!", garbage_count)
|
||||||
|
|
||||||
while True:
|
|
||||||
|
|
||||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
||||||
|
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
|
||||||
|
|
||||||
if successful_runs >= TARGET_RUNS.__wrapped__:
|
runs = 0
|
||||||
slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__)
|
successful_runs = 0
|
||||||
break
|
cumulative_evaluation_results = EvaluationResults()
|
||||||
|
|
||||||
if runs >= MAXIMUM_RUNS.__wrapped__:
|
while True:
|
||||||
slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__)
|
|
||||||
break
|
|
||||||
|
|
||||||
runs += 1
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
||||||
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}")
|
|
||||||
slog.debug("Run #%d", runs)
|
|
||||||
|
|
||||||
try:
|
if successful_runs >= TARGET_RUNS.__wrapped__:
|
||||||
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__)
|
||||||
sa = SentimentAnalyzer(tokenizer=Tokenizer())
|
|
||||||
except TypeError:
|
|
||||||
slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
|
||||||
break
|
|
||||||
|
|
||||||
|
|
||||||
with mongo_client_from_config() as db:
|
|
||||||
reviews = reviews_collection(db)
|
|
||||||
datasets_cm = Caches.from_database_samples(collection=reviews, sample_func=sample_func)
|
|
||||||
datasets = datasets_cm.__enter__()
|
|
||||||
|
|
||||||
try:
|
|
||||||
try:
|
|
||||||
slog.info("Training sentiment analyzer: %s", sa)
|
|
||||||
sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation)
|
|
||||||
|
|
||||||
except TrainingFailedError:
|
|
||||||
slog.error("Training failed, trying again with a different dataset...")
|
|
||||||
continue
|
|
||||||
|
|
||||||
else:
|
|
||||||
slog.info("Training succeeded!")
|
|
||||||
slog.info("Evaluating sentiment analyzer: %s", sa)
|
|
||||||
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
|
|
||||||
slog.info("Evaluation results: %s", evaluation_results)
|
|
||||||
successful_runs += 1
|
|
||||||
cumulative_evaluation_results += evaluation_results
|
|
||||||
break
|
break
|
||||||
finally:
|
|
||||||
datasets_cm.__exit__(None, None, None)
|
|
||||||
|
|
||||||
slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results)
|
if runs >= MAXIMUM_RUNS.__wrapped__:
|
||||||
|
slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__)
|
||||||
|
break
|
||||||
|
|
||||||
|
runs += 1
|
||||||
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}")
|
||||||
|
slog.debug("Run #%d", runs)
|
||||||
|
|
||||||
|
try:
|
||||||
|
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
||||||
|
sa = SentimentAnalyzer(tokenizer=Tokenizer())
|
||||||
|
except TypeError:
|
||||||
|
slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
with mongo_client_from_config() as db:
|
||||||
|
reviews = reviews_collection(db)
|
||||||
|
datasets_cm = Caches.from_database_samples(collection=reviews, sample_func=sample_func)
|
||||||
|
datasets = datasets_cm.__enter__()
|
||||||
|
|
||||||
|
try:
|
||||||
|
try:
|
||||||
|
slog.info("Training sentiment analyzer: %s", sa)
|
||||||
|
sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation)
|
||||||
|
|
||||||
|
except TrainingFailedError:
|
||||||
|
slog.error("Training failed, trying again with a different dataset...")
|
||||||
|
|
||||||
|
file.write(f"{sample_func.__name__}\t{SentimentAnalyzer.__name__}\t{Tokenizer.__name__}\t{runs}\t\t\t\t\t\t\t\t\t\t\t\t\t\n")
|
||||||
|
file.flush()
|
||||||
|
continue
|
||||||
|
|
||||||
|
else:
|
||||||
|
slog.info("Training succeeded!")
|
||||||
|
slog.info("Evaluating sentiment analyzer: %s", sa)
|
||||||
|
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
|
||||||
|
slog.info("Evaluation results: %s", evaluation_results)
|
||||||
|
|
||||||
|
file.write(f"{sample_func.__name__}\t{SentimentAnalyzer.__name__}\t{Tokenizer.__name__}\t{runs}\t{evaluation_results.mean_absolute_error()}\t{evaluation_results.mean_squared_error()}\t{evaluation_results.perfect_count()}\t{evaluation_results.recall(1.0)}\t{evaluation_results.recall(2.0)}\t{evaluation_results.recall(3.0)}\t{evaluation_results.recall(4.0)}\t{evaluation_results.recall(5.0)}\t{evaluation_results.precision(1.0)}\t{evaluation_results.precision(2.0)}\t{evaluation_results.precision(3.0)}\t{evaluation_results.precision(4.0)}\t{evaluation_results.precision(5.0)}\n")
|
||||||
|
file.flush()
|
||||||
|
|
||||||
|
|
||||||
|
successful_runs += 1
|
||||||
|
cumulative_evaluation_results += evaluation_results
|
||||||
|
break
|
||||||
|
finally:
|
||||||
|
datasets_cm.__exit__(None, None, None)
|
||||||
|
|
||||||
|
slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
|
@ -147,6 +147,8 @@ class EvaluationResults:
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
return self.confusion_matrix[rating][rating] / self.recall_count(rating)
|
return self.confusion_matrix[rating][rating] / self.recall_count(rating)
|
||||||
|
except KeyError:
|
||||||
|
return float("NaN")
|
||||||
except ZeroDivisionError:
|
except ZeroDivisionError:
|
||||||
return float("inf")
|
return float("inf")
|
||||||
|
|
||||||
|
@ -156,6 +158,8 @@ class EvaluationResults:
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
return self.confusion_matrix[rating][rating] / self.precision_count(rating)
|
return self.confusion_matrix[rating][rating] / self.precision_count(rating)
|
||||||
|
except KeyError:
|
||||||
|
return float("NaN")
|
||||||
except ZeroDivisionError:
|
except ZeroDivisionError:
|
||||||
return float("inf")
|
return float("inf")
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue