1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-21 23:44:19 +00:00

Various upgrades

This commit is contained in:
Steffo 2023-02-14 02:25:38 +01:00
parent e71baeb41c
commit b777236735
Signed by: steffo
GPG key ID: 2A24051445686895
4 changed files with 189 additions and 50 deletions

View file

@ -5,10 +5,10 @@ from .log import install_general_log_handlers
install_general_log_handlers() install_general_log_handlers()
from .config import config from .config import config, TARGET_RUNS, MAXIMUM_RUNS
from .database import mongo_client_from_config, reviews_collection, sample_reviews_polar, sample_reviews_varied from .database import mongo_client_from_config, reviews_collection, sample_reviews_polar, sample_reviews_varied
from .analysis import NLTKSentimentAnalyzer, TensorflowCategorySentimentAnalyzer, TensorflowPolarSentimentAnalyzer, ThreeCheat from .analysis import NLTKSentimentAnalyzer, TensorflowCategorySentimentAnalyzer, TensorflowPolarSentimentAnalyzer, ThreeCheat
from .analysis.base import TrainingFailedError from .analysis.base import TrainingFailedError, EvaluationResults
from .tokenizer import PlainTokenizer, LowercaseTokenizer, NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, HuggingBertTokenizer from .tokenizer import PlainTokenizer, LowercaseTokenizer, NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, HuggingBertTokenizer
from .gathering import Caches from .gathering import Caches
@ -42,7 +42,7 @@ def main():
slog.debug("Selected sample_func: %s", sample_func.__name__) slog.debug("Selected sample_func: %s", sample_func.__name__)
for SentimentAnalyzer in [ for SentimentAnalyzer in [
ThreeCheat, # ThreeCheat,
NLTKSentimentAnalyzer, NLTKSentimentAnalyzer,
TensorflowPolarSentimentAnalyzer, TensorflowPolarSentimentAnalyzer,
TensorflowCategorySentimentAnalyzer, TensorflowCategorySentimentAnalyzer,
@ -67,17 +67,25 @@ def main():
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}") slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__) slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
run_counter = 0 runs = 0
successful_runs = 0
cumulative_evaluation_results = EvaluationResults()
while True: while True:
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{run_counter}") slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
run_counter += 1
slog.debug("Run #%d", run_counter)
if run_counter >= 100: if successful_runs >= TARGET_RUNS.__wrapped__:
slog.fatal("Exceeded 100 runs, giving up and exiting...") slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__)
exit(2) break
if runs >= MAXIMUM_RUNS.__wrapped__:
slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__)
break
runs += 1
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}")
slog.debug("Run #%d", runs)
try: try:
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__) slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
@ -97,12 +105,15 @@ def main():
else: else:
slog.info("Training succeeded!") slog.info("Training succeeded!")
slog.info("Evaluating sentiment analyzer: %s", sa) slog.info("Evaluating sentiment analyzer: %s", sa)
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation) evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
slog.info("Evaluation results: %s", evaluation_results) slog.info("Evaluation results: %s", evaluation_results)
successful_runs += 1
cumulative_evaluation_results += evaluation_results
break break
slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View file

@ -2,7 +2,7 @@ from __future__ import annotations
import abc import abc
import logging import logging
import dataclasses import collections
from ..database import CachedDatasetFunc from ..database import CachedDatasetFunc
from ..tokenizer import BaseTokenizer from ..tokenizer import BaseTokenizer
@ -39,54 +39,148 @@ class BaseSentimentAnalyzer(metaclass=abc.ABCMeta):
""" """
Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category. Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category.
""" """
er = EvaluationResults()
# TODO: Add precision and recall measures
evaluated: int = 0
perfect: int = 0
squared_error: float = 0.0
for review in evaluation_dataset_func(): for review in evaluation_dataset_func():
resulting_category = self.use(review.text) er.add(expected=review.rating, predicted=self.use(review.text))
log.debug("Evaluation step: %.1d* for %s", resulting_category, review) return er
evaluated += 1
try:
perfect += 1 if resulting_category == review.rating else 0
squared_error += (resulting_category - review.rating) ** 2
except ValueError:
log.warning("Model execution on %s resulted in a NaN value: %s", review, resulting_category)
return EvaluationResults(perfect=perfect, evaluated=evaluated, mse=squared_error / evaluated)
@dataclasses.dataclass
class EvaluationResults: class EvaluationResults:
""" """
Container for the results of a dataset evaluation. Container for the results of a dataset evaluation.
""" """
evaluated: int def __init__(self):
""" self.confusion_matrix: dict[float, dict[float, int]] = collections.defaultdict(lambda: collections.defaultdict(lambda: 0))
The number of reviews that were evaluated. """
""" Confusion matrix of the evaluation.
perfect: int First key is the expected rating, second key is the output label.
""" """
The number of reviews for which the model returned the correct rating.
"""
mse: float self.absolute_error_total: float = 0.0
""" """
Mean squared error Sum of the absolute errors committed in the evaluation.
""" """
def __repr__(self): self.squared_error_total: float = 0.0
return f"<EvaluationResults: {self!s}>" """
Sum of the squared errors committed in the evaluation.
"""
def __str__(self): def __repr__(self) -> str:
return f"Evaluation results:\t{self.evaluated}\tevaluated\t{self.perfect}\tperfect\t{self.perfect / self.evaluated:.2%}\taccuracy\t{self.mse / self.evaluated:.2}\tmean squared error" return f"<EvaluationResults with {self.evaluated_count()} evaluated and {len(self.keys())} categories>"
def __str__(self) -> str:
text = [f"Evaluation results: {self.evaluated_count()} evaluated, {self.mean_absolute_error()} mean absolute error, {self.mean_squared_error()} mean squared error, "]
for key in self.keys():
text.append(f"{self.recall(key)} recall of {key}, ")
text.append(f"{self.precision(key)} precision of {key}, ")
text.append(f"{self.perfect_count()} perfect matches.")
return "".join(text)
def __add__(self, other: EvaluationResults) -> EvaluationResults:
new = self.__class__()
for expected, value in self.confusion_matrix.items():
for predicted, amount in value.items():
new.confusion_matrix[expected][predicted] += amount
for expected, value in other.confusion_matrix.items():
for predicted, amount in value.items():
new.confusion_matrix[expected][predicted] += amount
return new
def keys(self) -> set[float]:
"""
Return all processed categories.
"""
keys: set[float] = set()
for expected, value in self.confusion_matrix.items():
keys.add(expected)
for predicted, _ in value.items():
keys.add(predicted)
return keys
def evaluated_count(self) -> int:
"""
Return the total number of evaluated reviews.
"""
total: int = 0
for row in self.confusion_matrix.values():
for el in row.values():
total += el
return total
def perfect_count(self) -> int:
"""
Return the total number of perfect reviews.
"""
total: int = 0
for key in self.keys():
total += self.confusion_matrix[key][key]
return total
def recall_count(self, rating: float) -> int:
"""
Return the number of reviews processed with the given rating.
"""
total: int = 0
for el in self.confusion_matrix[rating].values():
total += el
return total
def precision_count(self, rating: float) -> int:
"""
Return the number of reviews for which the model returned the given rating.
"""
total: int = 0
for col in self.confusion_matrix.values():
total += col[rating]
return total
def recall(self, rating: float) -> float:
"""
Return the recall for a given rating.
"""
try:
return self.confusion_matrix[rating][rating] / self.recall_count(rating)
except ZeroDivisionError:
return float("inf")
def precision(self, rating: float) -> float:
"""
Return the precision for a given rating.
"""
try:
return self.confusion_matrix[rating][rating] / self.precision_count(rating)
except ZeroDivisionError:
return float("inf")
def mean_absolute_error(self) -> float:
"""
Return the mean absolute error.
"""
return self.absolute_error_total / self.evaluated_count()
def mean_squared_error(self) -> float:
"""
Return the mean squared error.
"""
return self.squared_error_total / self.evaluated_count()
def add(self, expected: float, predicted: float) -> None:
"""
Count a new prediction.
"""
if expected == predicted:
log.log(11, "Expected %.1d*, predicted %.1d*", expected, predicted) # Success
else:
log.log(12, "Expected %.1d*, predicted %.1d*", expected, predicted) # Failure
self.confusion_matrix[expected][predicted] += 1
self.absolute_error_total += abs(expected - predicted)
self.squared_error_total += (expected - predicted) ** 2
class AlreadyTrainedError(Exception): class AlreadyTrainedError(Exception):

View file

@ -125,6 +125,35 @@ def TENSORFLOW_EPOCHS(val: str | None) -> int:
raise cfig.InvalidValueError("Not an int.") raise cfig.InvalidValueError("Not an int.")
@config.optional()
def TARGET_RUNS(val: str | None) -> int:
"""
The amount of successful runs to perform on a sample-model-tokenizer combination.
Defaults to `1`.
"""
if val is None:
return 1
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def MAXIMUM_RUNS(val: str | None) -> int:
"""
The maximum amount of runs to perform on a sample-model-tokenizer combination before skipping it.
Defaults to `25`.
"""
if val is None:
return 25
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
__all__ = ( __all__ = (
"config", "config",
"MONGO_HOST", "MONGO_HOST",

View file

@ -3,6 +3,9 @@ import logging
import coloredlogs import coloredlogs
import pathlib import pathlib
logging.addLevelName(11, "SUCCESS")
logging.addLevelName(12, "FAILURE")
this_log = logging.getLogger(__name__) this_log = logging.getLogger(__name__)
@ -34,9 +37,11 @@ def install_general_log_handlers():
level_styles=dict( level_styles=dict(
debug=dict(color="white"), debug=dict(color="white"),
info=dict(color="cyan"), info=dict(color="cyan"),
warning=dict(color="yellow"), warning=dict(color="yellow", bold=True),
error=dict(color="red"), error=dict(color="red", bold=True),
critical=dict(color="black", background="red", bold=True), critical=dict(color="black", background="red", bold=True),
success=dict(color="green"),
failure=dict(color="yellow"),
), ),
field_styles=dict( field_styles=dict(
asctime=dict(color='magenta'), asctime=dict(color='magenta'),