mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-21 23:44:19 +00:00
Getting closer...
This commit is contained in:
parent
02f10e6ae4
commit
dcfc4fbc3b
6 changed files with 170 additions and 126 deletions
|
@ -7,6 +7,7 @@
|
|||
<excludeFolder url="file://$MODULE_DIR$/data/db" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/data/raw" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/data/nltk" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Poetry (unimore-bda-6)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
|
|
|
@ -2,7 +2,7 @@ import logging
|
|||
import tensorflow
|
||||
|
||||
from .config import config, DATA_SET_SIZE
|
||||
from .database import mongo_reviews_collection_from_config, polar_dataset, varied_dataset
|
||||
from .database import mongo_reviews_collection_from_config, sample_reviews_polar, sample_reviews_varied
|
||||
from .analysis.nltk_sentiment import NLTKSentimentAnalyzer
|
||||
from .analysis.tf_text import TensorflowSentimentAnalyzer
|
||||
from .tokenizer import NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, LowercaseTokenizer
|
||||
|
@ -17,37 +17,44 @@ def main():
|
|||
else:
|
||||
log.debug("Tensorflow successfully found GPU acceleration!")
|
||||
|
||||
for dataset_func in [polar_dataset, varied_dataset]:
|
||||
for SentimentAnalyzer in [
|
||||
NLTKSentimentAnalyzer,
|
||||
# TensorflowSentimentAnalyzer,
|
||||
for dataset_func in [sample_reviews_polar, sample_reviews_varied]:
|
||||
# Tensorflow-based
|
||||
for Tokenizer in [
|
||||
LowercaseTokenizer
|
||||
]:
|
||||
for Tokenizer in [
|
||||
NLTKWordTokenizer,
|
||||
PottsTokenizer,
|
||||
PottsTokenizerWithNegation,
|
||||
LowercaseTokenizer,
|
||||
]:
|
||||
tokenizer = Tokenizer()
|
||||
model = SentimentAnalyzer(tokenizer=tokenizer)
|
||||
tokenizer = Tokenizer()
|
||||
model = TensorflowSentimentAnalyzer()
|
||||
|
||||
with mongo_reviews_collection_from_config() as reviews:
|
||||
reviews_training = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
|
||||
reviews_evaluation = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
|
||||
with mongo_reviews_collection_from_config() as collection:
|
||||
...
|
||||
|
||||
log.info("Training model %s", model)
|
||||
model.train(reviews_training)
|
||||
log.info("Evaluating model %s", model)
|
||||
correct, evaluated = model.evaluate(reviews_evaluation)
|
||||
log.info("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
|
||||
# NLTK-based
|
||||
for Tokenizer in [
|
||||
NLTKWordTokenizer,
|
||||
PottsTokenizer,
|
||||
PottsTokenizerWithNegation,
|
||||
LowercaseTokenizer,
|
||||
]:
|
||||
tokenizer = Tokenizer()
|
||||
model = NLTKSentimentAnalyzer(tokenizer=tokenizer)
|
||||
|
||||
# try:
|
||||
# print("Manual testing for %s" % model)
|
||||
# print("Input an empty string to continue to the next model.")
|
||||
# while inp := input():
|
||||
# print(model.use(inp))
|
||||
# except KeyboardInterrupt:
|
||||
# pass
|
||||
with mongo_reviews_collection_from_config() as collection:
|
||||
reviews_training = dataset_func(collection=collection, amount=DATA_SET_SIZE.__wrapped__)
|
||||
reviews_evaluation = dataset_func(collection=collection, amount=DATA_SET_SIZE.__wrapped__)
|
||||
|
||||
log.info("Training model %s", model)
|
||||
model.train(reviews_training)
|
||||
log.info("Evaluating model %s", model)
|
||||
correct, evaluated = model.evaluate(reviews_evaluation)
|
||||
log.info("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
|
||||
|
||||
# try:
|
||||
# print("Manual testing for %s" % model)
|
||||
# print("Input an empty string to continue to the next model.")
|
||||
# while inp := input():
|
||||
# print(model.use(inp))
|
||||
# except KeyboardInterrupt:
|
||||
# pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,47 +1,55 @@
|
|||
import abc
|
||||
import logging
|
||||
import typing as t
|
||||
import dataclasses
|
||||
|
||||
from ..database import DataSet, Text, Category
|
||||
from ..tokenizer import BaseTokenizer
|
||||
from ..database import Text, Category, Review, DatasetFunc
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class EvaluationResults:
|
||||
correct: int
|
||||
evaluated: int
|
||||
|
||||
def __repr__(self):
|
||||
return f"<EvaluationResults: {self.correct}/{self.evaluated}, {self.correct / self.evaluated * 100:.2f}>"
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.correct} / {self.evaluated} - {self.correct / self.evaluated * 100:.2f} %"
|
||||
|
||||
|
||||
class BaseSentimentAnalyzer(metaclass=abc.ABCMeta):
|
||||
"""
|
||||
Abstract base class for sentiment analyzers implemented in this project.
|
||||
"""
|
||||
|
||||
def __init__(self, *, tokenizer: BaseTokenizer):
|
||||
self.tokenizer: BaseTokenizer = tokenizer
|
||||
|
||||
def __repr__(self):
|
||||
return f"<{self.__class__.__qualname__} tokenizer={self.tokenizer!r}>"
|
||||
|
||||
@abc.abstractmethod
|
||||
def train(self, training_set: DataSet) -> None:
|
||||
def train(self, dataset_func: DatasetFunc) -> None:
|
||||
"""
|
||||
Train the analyzer with the given training dataset.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def evaluate(self, test_set: DataSet) -> tuple[int, int]:
|
||||
def evaluate(self, dataset_func: DatasetFunc) -> EvaluationResults:
|
||||
"""
|
||||
Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category.
|
||||
|
||||
Returns a tuple with the number of correct results and the number of evaluated results.
|
||||
"""
|
||||
evaluated: int = 0
|
||||
correct: int = 0
|
||||
|
||||
for text, expected_category in test_set:
|
||||
resulting_category = self.use(text)
|
||||
evaluated: int = 0
|
||||
correct: int = 0
|
||||
|
||||
for review in dataset_func():
|
||||
resulting_category = self.use(review.text)
|
||||
evaluated += 1
|
||||
correct += 1 if resulting_category == expected_category else 0
|
||||
correct += 1 if resulting_category == review.category else 0
|
||||
if not evaluated % 100:
|
||||
log.debug("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
|
||||
|
||||
return correct, evaluated
|
||||
return EvaluationResults(correct=correct, evaluated=evaluated)
|
||||
|
||||
@abc.abstractmethod
|
||||
def use(self, text: Text) -> Category:
|
||||
|
|
|
@ -6,7 +6,7 @@ import logging
|
|||
import typing as t
|
||||
import itertools
|
||||
|
||||
from ..database import Text, Category, DataTuple, DataSet
|
||||
from ..database import Text, Category, Review
|
||||
from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError
|
||||
from ..log import count_passage
|
||||
from ..tokenizer import BaseTokenizer
|
||||
|
@ -23,16 +23,20 @@ class NLTKSentimentAnalyzer(BaseSentimentAnalyzer):
|
|||
"""
|
||||
|
||||
def __init__(self, *, tokenizer: BaseTokenizer) -> None:
|
||||
super().__init__(tokenizer=tokenizer)
|
||||
super().__init__()
|
||||
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
|
||||
self.trained: bool = False
|
||||
self.tokenizer: BaseTokenizer = tokenizer
|
||||
|
||||
def __tokenize_datatuple(self, datatuple: DataTuple) -> tuple[TokenBag, Category]:
|
||||
def __repr__(self):
|
||||
return f"<{self.__class__.__qualname__} tokenizer={self.tokenizer!r}>"
|
||||
|
||||
def __tokenize_datatuple(self, datatuple: Review) -> tuple[TokenBag, Category]:
|
||||
"""
|
||||
Convert the `Text` of a `DataTuple` to a `TokenBag`.
|
||||
"""
|
||||
count_passage(log, "tokenize_datatuple", 100)
|
||||
return self.tokenizer.tokenize_builtins(datatuple[0]), datatuple[1]
|
||||
return self.tokenizer.tokenize_builtins(datatuple.text), datatuple.category
|
||||
|
||||
def _add_feature_unigrams(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
|
||||
"""
|
||||
|
@ -63,7 +67,7 @@ class NLTKSentimentAnalyzer(BaseSentimentAnalyzer):
|
|||
count_passage(log, "extract_features", 100)
|
||||
return self.model.extract_features(data[0]), data[1]
|
||||
|
||||
def train(self, dataset: DataSet) -> None:
|
||||
def train(self, dataset: t.Iterator[Review]) -> None:
|
||||
# Forbid retraining the model
|
||||
if self.trained:
|
||||
raise AlreadyTrainedError()
|
||||
|
|
|
@ -2,42 +2,25 @@ import tensorflow
|
|||
import itertools
|
||||
import typing as t
|
||||
|
||||
from ..database import DataSet, Text, Category
|
||||
from ..database import Text, Category, Review
|
||||
from ..tokenizer import BaseTokenizer
|
||||
from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError
|
||||
|
||||
|
||||
class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer):
|
||||
def __init__(self, *, tokenizer: BaseTokenizer):
|
||||
super().__init__(tokenizer=tokenizer)
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.trained = False
|
||||
self.text_vectorization_layer = None
|
||||
self.neural_network: tensorflow.keras.Sequential | None = None
|
||||
|
||||
@staticmethod
|
||||
def __infinite_dataset_generator_factory(dataset: DataSet):
|
||||
"""
|
||||
A generator of infinite copies of dataset.
|
||||
|
||||
.. todo:: Loads the whole dataset in memory. What a waste! Can we perform multiple MongoDB queries instead?
|
||||
"""
|
||||
dataset = map(lambda text, category: (tensorflow.convert_to_tensor(text, dtype=tensorflow.string), tensorflow.convert_to_tensor(category, dtype=tensorflow.string)), dataset)
|
||||
|
||||
def generator():
|
||||
while True:
|
||||
nonlocal dataset
|
||||
dataset, result = itertools.tee(dataset, 2)
|
||||
yield result
|
||||
|
||||
return generator
|
||||
|
||||
@classmethod
|
||||
def __bda_dataset_to_tf_dataset(cls, dataset: DataSet) -> tensorflow.data.Dataset:
|
||||
def __bda_dataset_to_tf_dataset(cls, dataset_func: t.Callable[[], t.Iterator[Review]]) -> tensorflow.data.Dataset:
|
||||
"""
|
||||
Convert a `unimore_bda_6.database.DataSet` to a "real" `tensorflow.data.Dataset`.
|
||||
"""
|
||||
return tensorflow.data.Dataset.from_generator(
|
||||
cls.__infinite_dataset_generator_factory(dataset),
|
||||
dataset_func,
|
||||
output_signature=(
|
||||
tensorflow.TensorSpec(shape=(), dtype=tensorflow.string),
|
||||
tensorflow.TensorSpec(shape=(), dtype=tensorflow.string),
|
||||
|
@ -48,7 +31,7 @@ class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer):
|
|||
EMBEDDING_DIM = 16
|
||||
EPOCHS = 10
|
||||
|
||||
def train(self, training_set: DataSet) -> None:
|
||||
def train(self, training_set: t.Iterator[Review]) -> None:
|
||||
if self.trained:
|
||||
raise AlreadyTrainedError()
|
||||
|
||||
|
|
|
@ -4,14 +4,19 @@ import pymongo.collection
|
|||
import contextlib
|
||||
import bson
|
||||
import logging
|
||||
import itertools
|
||||
import tensorflow
|
||||
|
||||
from .config import MONGO_HOST, MONGO_PORT, WORKING_SET_SIZE
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Review(t.TypedDict):
|
||||
class MongoReview(t.TypedDict):
|
||||
"""
|
||||
A review as it is stored on MongoDB.
|
||||
|
||||
.. warning:: Do not instantiate: this is only for type hints!
|
||||
"""
|
||||
_id: bson.ObjectId
|
||||
reviewerID: str
|
||||
asin: str
|
||||
|
@ -28,13 +33,13 @@ Text = str
|
|||
Category = float
|
||||
|
||||
|
||||
class DataTuple:
|
||||
def __init__(self, text, category):
|
||||
class Review:
|
||||
def __init__(self, text: Text, category: Category):
|
||||
self.text: Text = text
|
||||
self.category: Category = category
|
||||
|
||||
@classmethod
|
||||
def from_review(cls, review):
|
||||
def from_mongoreview(cls, review: MongoReview):
|
||||
return cls(
|
||||
text=review["reviewText"],
|
||||
category=review["overall"],
|
||||
|
@ -44,15 +49,15 @@ class DataTuple:
|
|||
return f"<{self.__class__.__qualname__}: [{self.category}] {self.text}>"
|
||||
|
||||
def __getitem__(self, item):
|
||||
if item == 0:
|
||||
if item == 0 or item == "text":
|
||||
return self.text
|
||||
elif item == 1:
|
||||
elif item == 1 or item == "category":
|
||||
return self.category
|
||||
else:
|
||||
raise KeyError(item)
|
||||
|
||||
|
||||
DataSet = t.Iterable[DataTuple]
|
||||
def to_tensor_tuple(self) -> tuple[tensorflow.Tensor, tensorflow.Tensor]:
|
||||
return tensorflow.convert_to_tensor(self.text, dtype=tensorflow.string), tensorflow.convert_to_tensor(self.category, dtype=tensorflow.string)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
|
@ -65,7 +70,7 @@ def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]:
|
|||
host=MONGO_HOST.__wrapped__,
|
||||
port=MONGO_PORT.__wrapped__,
|
||||
)
|
||||
log.info("Opened connection to MongoDB at %s!", client.address)
|
||||
log.info("Opened connection to MongoDB!")
|
||||
|
||||
yield client
|
||||
|
||||
|
@ -75,7 +80,7 @@ def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]:
|
|||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[Review]:
|
||||
def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[MongoReview]:
|
||||
"""
|
||||
Create a new MongoDB client, access the ``reviews`` collection in the ``reviews`` database, and yield it.
|
||||
"""
|
||||
|
@ -86,82 +91,118 @@ def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[Revi
|
|||
yield collection
|
||||
|
||||
|
||||
def sample_reviews(reviews: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
|
||||
class DatasetFunc(t.Protocol):
|
||||
def __call__(self) -> t.Iterator[Review]:
|
||||
pass
|
||||
|
||||
|
||||
def sample_reviews(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
|
||||
"""
|
||||
Get ``amount`` random reviews from the ``reviews`` collection.
|
||||
"""
|
||||
log.debug("Getting a sample of %d reviews...", amount)
|
||||
|
||||
return reviews.aggregate([
|
||||
cursor = collection.aggregate([
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$sample": {"size": amount}},
|
||||
])
|
||||
|
||||
cursor = map(Review.from_mongoreview, cursor)
|
||||
return cursor
|
||||
|
||||
def sample_reviews_by_rating(reviews: pymongo.collection.Collection, rating: float, amount: int) -> t.Iterator[Review]:
|
||||
|
||||
def sample_reviews_by_rating(collection: pymongo.collection.Collection, rating: float, amount: int) -> t.Iterator[Review]:
|
||||
"""
|
||||
Get ``amount`` random reviews with ``rating`` stars from the ``reviews`` collection.
|
||||
"""
|
||||
log.debug("Getting a sample of %d reviews with %d stars...", amount, rating)
|
||||
|
||||
return reviews.aggregate([
|
||||
cursor = collection.aggregate([
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": rating}},
|
||||
{"$sample": {"size": amount}},
|
||||
])
|
||||
|
||||
|
||||
def polar_dataset(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[DataTuple]:
|
||||
"""
|
||||
Get a list of the same amount of 1-star and 5-star reviews.
|
||||
"""
|
||||
log.info("Building polar dataset with %d reviews...", amount * 2)
|
||||
|
||||
# Sample the required reviews
|
||||
positive = sample_reviews_by_rating(collection, rating=5.0, amount=amount)
|
||||
negative = sample_reviews_by_rating(collection, rating=1.0, amount=amount)
|
||||
|
||||
# Chain the iterators
|
||||
full = itertools.chain(positive, negative)
|
||||
|
||||
# Convert reviews to datatuples
|
||||
full = map(DataTuple.from_review, full)
|
||||
|
||||
return full
|
||||
cursor = map(Review.from_mongoreview, cursor)
|
||||
return cursor
|
||||
|
||||
|
||||
def varied_dataset(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[DataTuple]:
|
||||
"""
|
||||
Get a list of the same amount of reviews for each rating.
|
||||
"""
|
||||
log.info("Building varied dataset with %d reviews...", amount * 5)
|
||||
def sample_reviews_polar(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
|
||||
log.debug("Getting a sample of %d polar reviews...", amount * 2)
|
||||
|
||||
# Sample the required reviews
|
||||
terrible = sample_reviews_by_rating(collection, rating=1.0, amount=amount)
|
||||
negative = sample_reviews_by_rating(collection, rating=2.0, amount=amount)
|
||||
mixed = sample_reviews_by_rating(collection, rating=3.0, amount=amount)
|
||||
positive = sample_reviews_by_rating(collection, rating=4.0, amount=amount)
|
||||
great = sample_reviews_by_rating(collection, rating=5.0, amount=amount)
|
||||
cursor = collection.aggregate([
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": 1.0}},
|
||||
{"$sample": {"size": amount}},
|
||||
{"$unionWith": {
|
||||
"coll": collection.name,
|
||||
"pipeline": [
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": 5.0}},
|
||||
{"$sample": {"size": amount}},
|
||||
],
|
||||
}}
|
||||
])
|
||||
|
||||
# Chain the iterators
|
||||
full = itertools.chain(terrible, negative, mixed, positive, great)
|
||||
cursor = map(Review.from_mongoreview, cursor)
|
||||
return cursor
|
||||
|
||||
# Convert reviews to datatuples
|
||||
full = map(DataTuple.from_review, full)
|
||||
|
||||
return full
|
||||
def sample_reviews_varied(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
|
||||
log.debug("Getting a sample of %d varied reviews...", amount * 5)
|
||||
|
||||
# Wow, this is ugly.
|
||||
cursor = collection.aggregate([
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": 1.0}},
|
||||
{"$sample": {"size": amount}},
|
||||
{"$unionWith": {
|
||||
"coll": collection.name,
|
||||
"pipeline": [
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": 2.0}},
|
||||
{"$sample": {"size": amount}},
|
||||
{"$unionWith": {
|
||||
"coll": collection.name,
|
||||
"pipeline": [
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": 3.0}},
|
||||
{"$sample": {"size": amount}},
|
||||
{"$unionWith": {
|
||||
"coll": collection.name,
|
||||
"pipeline": [
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": 4.0}},
|
||||
{"$sample": {"size": amount}},
|
||||
{"$unionWith": {
|
||||
"coll": collection.name,
|
||||
"pipeline": [
|
||||
{"$limit": WORKING_SET_SIZE.__wrapped__},
|
||||
{"$match": {"overall": 5.0}},
|
||||
{"$sample": {"size": amount}},
|
||||
],
|
||||
}}
|
||||
],
|
||||
}}
|
||||
],
|
||||
}}
|
||||
],
|
||||
}}
|
||||
])
|
||||
|
||||
cursor = map(Review.from_mongoreview, cursor)
|
||||
return cursor
|
||||
|
||||
|
||||
__all__ = (
|
||||
"Review",
|
||||
"Text",
|
||||
"Category",
|
||||
"DataTuple",
|
||||
"DataSet",
|
||||
"Review",
|
||||
"DatasetFunc",
|
||||
"mongo_client_from_config",
|
||||
"mongo_reviews_collection_from_config",
|
||||
"sample_reviews",
|
||||
"sample_reviews_by_rating",
|
||||
"polar_dataset",
|
||||
"varied_dataset",
|
||||
"sample_reviews_polar",
|
||||
"sample_reviews_varied",
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue