1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-21 23:44:19 +00:00

Getting closer...

This commit is contained in:
Steffo 2023-02-04 06:14:24 +01:00
parent 02f10e6ae4
commit dcfc4fbc3b
Signed by: steffo
GPG key ID: 2A24051445686895
6 changed files with 170 additions and 126 deletions

View file

@ -7,6 +7,7 @@
<excludeFolder url="file://$MODULE_DIR$/data/db" />
<excludeFolder url="file://$MODULE_DIR$/data/raw" />
<excludeFolder url="file://$MODULE_DIR$/data/nltk" />
<excludeFolder url="file://$MODULE_DIR$/.venv" />
</content>
<orderEntry type="jdk" jdkName="Poetry (unimore-bda-6)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />

View file

@ -2,7 +2,7 @@ import logging
import tensorflow
from .config import config, DATA_SET_SIZE
from .database import mongo_reviews_collection_from_config, polar_dataset, varied_dataset
from .database import mongo_reviews_collection_from_config, sample_reviews_polar, sample_reviews_varied
from .analysis.nltk_sentiment import NLTKSentimentAnalyzer
from .analysis.tf_text import TensorflowSentimentAnalyzer
from .tokenizer import NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, LowercaseTokenizer
@ -17,37 +17,44 @@ def main():
else:
log.debug("Tensorflow successfully found GPU acceleration!")
for dataset_func in [polar_dataset, varied_dataset]:
for SentimentAnalyzer in [
NLTKSentimentAnalyzer,
# TensorflowSentimentAnalyzer,
for dataset_func in [sample_reviews_polar, sample_reviews_varied]:
# Tensorflow-based
for Tokenizer in [
LowercaseTokenizer
]:
for Tokenizer in [
NLTKWordTokenizer,
PottsTokenizer,
PottsTokenizerWithNegation,
LowercaseTokenizer,
]:
tokenizer = Tokenizer()
model = SentimentAnalyzer(tokenizer=tokenizer)
tokenizer = Tokenizer()
model = TensorflowSentimentAnalyzer()
with mongo_reviews_collection_from_config() as reviews:
reviews_training = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
reviews_evaluation = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
with mongo_reviews_collection_from_config() as collection:
...
log.info("Training model %s", model)
model.train(reviews_training)
log.info("Evaluating model %s", model)
correct, evaluated = model.evaluate(reviews_evaluation)
log.info("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
# NLTK-based
for Tokenizer in [
NLTKWordTokenizer,
PottsTokenizer,
PottsTokenizerWithNegation,
LowercaseTokenizer,
]:
tokenizer = Tokenizer()
model = NLTKSentimentAnalyzer(tokenizer=tokenizer)
# try:
# print("Manual testing for %s" % model)
# print("Input an empty string to continue to the next model.")
# while inp := input():
# print(model.use(inp))
# except KeyboardInterrupt:
# pass
with mongo_reviews_collection_from_config() as collection:
reviews_training = dataset_func(collection=collection, amount=DATA_SET_SIZE.__wrapped__)
reviews_evaluation = dataset_func(collection=collection, amount=DATA_SET_SIZE.__wrapped__)
log.info("Training model %s", model)
model.train(reviews_training)
log.info("Evaluating model %s", model)
correct, evaluated = model.evaluate(reviews_evaluation)
log.info("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
# try:
# print("Manual testing for %s" % model)
# print("Input an empty string to continue to the next model.")
# while inp := input():
# print(model.use(inp))
# except KeyboardInterrupt:
# pass
if __name__ == "__main__":

View file

@ -1,47 +1,55 @@
import abc
import logging
import typing as t
import dataclasses
from ..database import DataSet, Text, Category
from ..tokenizer import BaseTokenizer
from ..database import Text, Category, Review, DatasetFunc
log = logging.getLogger(__name__)
@dataclasses.dataclass
class EvaluationResults:
correct: int
evaluated: int
def __repr__(self):
return f"<EvaluationResults: {self.correct}/{self.evaluated}, {self.correct / self.evaluated * 100:.2f}>"
def __str__(self):
return f"{self.correct} / {self.evaluated} - {self.correct / self.evaluated * 100:.2f} %"
class BaseSentimentAnalyzer(metaclass=abc.ABCMeta):
"""
Abstract base class for sentiment analyzers implemented in this project.
"""
def __init__(self, *, tokenizer: BaseTokenizer):
self.tokenizer: BaseTokenizer = tokenizer
def __repr__(self):
return f"<{self.__class__.__qualname__} tokenizer={self.tokenizer!r}>"
@abc.abstractmethod
def train(self, training_set: DataSet) -> None:
def train(self, dataset_func: DatasetFunc) -> None:
"""
Train the analyzer with the given training dataset.
"""
raise NotImplementedError()
def evaluate(self, test_set: DataSet) -> tuple[int, int]:
def evaluate(self, dataset_func: DatasetFunc) -> EvaluationResults:
"""
Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category.
Returns a tuple with the number of correct results and the number of evaluated results.
"""
evaluated: int = 0
correct: int = 0
for text, expected_category in test_set:
resulting_category = self.use(text)
evaluated: int = 0
correct: int = 0
for review in dataset_func():
resulting_category = self.use(review.text)
evaluated += 1
correct += 1 if resulting_category == expected_category else 0
correct += 1 if resulting_category == review.category else 0
if not evaluated % 100:
log.debug("%d evaluated, %d correct, %0.2d %% accuracy", evaluated, correct, correct / evaluated * 100)
return correct, evaluated
return EvaluationResults(correct=correct, evaluated=evaluated)
@abc.abstractmethod
def use(self, text: Text) -> Category:

View file

@ -6,7 +6,7 @@ import logging
import typing as t
import itertools
from ..database import Text, Category, DataTuple, DataSet
from ..database import Text, Category, Review
from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError
from ..log import count_passage
from ..tokenizer import BaseTokenizer
@ -23,16 +23,20 @@ class NLTKSentimentAnalyzer(BaseSentimentAnalyzer):
"""
def __init__(self, *, tokenizer: BaseTokenizer) -> None:
super().__init__(tokenizer=tokenizer)
super().__init__()
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
self.trained: bool = False
self.tokenizer: BaseTokenizer = tokenizer
def __tokenize_datatuple(self, datatuple: DataTuple) -> tuple[TokenBag, Category]:
def __repr__(self):
return f"<{self.__class__.__qualname__} tokenizer={self.tokenizer!r}>"
def __tokenize_datatuple(self, datatuple: Review) -> tuple[TokenBag, Category]:
"""
Convert the `Text` of a `DataTuple` to a `TokenBag`.
"""
count_passage(log, "tokenize_datatuple", 100)
return self.tokenizer.tokenize_builtins(datatuple[0]), datatuple[1]
return self.tokenizer.tokenize_builtins(datatuple.text), datatuple.category
def _add_feature_unigrams(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None:
"""
@ -63,7 +67,7 @@ class NLTKSentimentAnalyzer(BaseSentimentAnalyzer):
count_passage(log, "extract_features", 100)
return self.model.extract_features(data[0]), data[1]
def train(self, dataset: DataSet) -> None:
def train(self, dataset: t.Iterator[Review]) -> None:
# Forbid retraining the model
if self.trained:
raise AlreadyTrainedError()

View file

@ -2,42 +2,25 @@ import tensorflow
import itertools
import typing as t
from ..database import DataSet, Text, Category
from ..database import Text, Category, Review
from ..tokenizer import BaseTokenizer
from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError
class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer):
def __init__(self, *, tokenizer: BaseTokenizer):
super().__init__(tokenizer=tokenizer)
def __init__(self):
super().__init__()
self.trained = False
self.text_vectorization_layer = None
self.neural_network: tensorflow.keras.Sequential | None = None
@staticmethod
def __infinite_dataset_generator_factory(dataset: DataSet):
"""
A generator of infinite copies of dataset.
.. todo:: Loads the whole dataset in memory. What a waste! Can we perform multiple MongoDB queries instead?
"""
dataset = map(lambda text, category: (tensorflow.convert_to_tensor(text, dtype=tensorflow.string), tensorflow.convert_to_tensor(category, dtype=tensorflow.string)), dataset)
def generator():
while True:
nonlocal dataset
dataset, result = itertools.tee(dataset, 2)
yield result
return generator
@classmethod
def __bda_dataset_to_tf_dataset(cls, dataset: DataSet) -> tensorflow.data.Dataset:
def __bda_dataset_to_tf_dataset(cls, dataset_func: t.Callable[[], t.Iterator[Review]]) -> tensorflow.data.Dataset:
"""
Convert a `unimore_bda_6.database.DataSet` to a "real" `tensorflow.data.Dataset`.
"""
return tensorflow.data.Dataset.from_generator(
cls.__infinite_dataset_generator_factory(dataset),
dataset_func,
output_signature=(
tensorflow.TensorSpec(shape=(), dtype=tensorflow.string),
tensorflow.TensorSpec(shape=(), dtype=tensorflow.string),
@ -48,7 +31,7 @@ class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer):
EMBEDDING_DIM = 16
EPOCHS = 10
def train(self, training_set: DataSet) -> None:
def train(self, training_set: t.Iterator[Review]) -> None:
if self.trained:
raise AlreadyTrainedError()

View file

@ -4,14 +4,19 @@ import pymongo.collection
import contextlib
import bson
import logging
import itertools
import tensorflow
from .config import MONGO_HOST, MONGO_PORT, WORKING_SET_SIZE
log = logging.getLogger(__name__)
class Review(t.TypedDict):
class MongoReview(t.TypedDict):
"""
A review as it is stored on MongoDB.
.. warning:: Do not instantiate: this is only for type hints!
"""
_id: bson.ObjectId
reviewerID: str
asin: str
@ -28,13 +33,13 @@ Text = str
Category = float
class DataTuple:
def __init__(self, text, category):
class Review:
def __init__(self, text: Text, category: Category):
self.text: Text = text
self.category: Category = category
@classmethod
def from_review(cls, review):
def from_mongoreview(cls, review: MongoReview):
return cls(
text=review["reviewText"],
category=review["overall"],
@ -44,15 +49,15 @@ class DataTuple:
return f"<{self.__class__.__qualname__}: [{self.category}] {self.text}>"
def __getitem__(self, item):
if item == 0:
if item == 0 or item == "text":
return self.text
elif item == 1:
elif item == 1 or item == "category":
return self.category
else:
raise KeyError(item)
DataSet = t.Iterable[DataTuple]
def to_tensor_tuple(self) -> tuple[tensorflow.Tensor, tensorflow.Tensor]:
return tensorflow.convert_to_tensor(self.text, dtype=tensorflow.string), tensorflow.convert_to_tensor(self.category, dtype=tensorflow.string)
@contextlib.contextmanager
@ -65,7 +70,7 @@ def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]:
host=MONGO_HOST.__wrapped__,
port=MONGO_PORT.__wrapped__,
)
log.info("Opened connection to MongoDB at %s!", client.address)
log.info("Opened connection to MongoDB!")
yield client
@ -75,7 +80,7 @@ def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]:
@contextlib.contextmanager
def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[Review]:
def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[MongoReview]:
"""
Create a new MongoDB client, access the ``reviews`` collection in the ``reviews`` database, and yield it.
"""
@ -86,82 +91,118 @@ def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[Revi
yield collection
def sample_reviews(reviews: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
class DatasetFunc(t.Protocol):
def __call__(self) -> t.Iterator[Review]:
pass
def sample_reviews(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
"""
Get ``amount`` random reviews from the ``reviews`` collection.
"""
log.debug("Getting a sample of %d reviews...", amount)
return reviews.aggregate([
cursor = collection.aggregate([
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$sample": {"size": amount}},
])
cursor = map(Review.from_mongoreview, cursor)
return cursor
def sample_reviews_by_rating(reviews: pymongo.collection.Collection, rating: float, amount: int) -> t.Iterator[Review]:
def sample_reviews_by_rating(collection: pymongo.collection.Collection, rating: float, amount: int) -> t.Iterator[Review]:
"""
Get ``amount`` random reviews with ``rating`` stars from the ``reviews`` collection.
"""
log.debug("Getting a sample of %d reviews with %d stars...", amount, rating)
return reviews.aggregate([
cursor = collection.aggregate([
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": rating}},
{"$sample": {"size": amount}},
])
def polar_dataset(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[DataTuple]:
"""
Get a list of the same amount of 1-star and 5-star reviews.
"""
log.info("Building polar dataset with %d reviews...", amount * 2)
# Sample the required reviews
positive = sample_reviews_by_rating(collection, rating=5.0, amount=amount)
negative = sample_reviews_by_rating(collection, rating=1.0, amount=amount)
# Chain the iterators
full = itertools.chain(positive, negative)
# Convert reviews to datatuples
full = map(DataTuple.from_review, full)
return full
cursor = map(Review.from_mongoreview, cursor)
return cursor
def varied_dataset(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[DataTuple]:
"""
Get a list of the same amount of reviews for each rating.
"""
log.info("Building varied dataset with %d reviews...", amount * 5)
def sample_reviews_polar(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
log.debug("Getting a sample of %d polar reviews...", amount * 2)
# Sample the required reviews
terrible = sample_reviews_by_rating(collection, rating=1.0, amount=amount)
negative = sample_reviews_by_rating(collection, rating=2.0, amount=amount)
mixed = sample_reviews_by_rating(collection, rating=3.0, amount=amount)
positive = sample_reviews_by_rating(collection, rating=4.0, amount=amount)
great = sample_reviews_by_rating(collection, rating=5.0, amount=amount)
cursor = collection.aggregate([
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": 1.0}},
{"$sample": {"size": amount}},
{"$unionWith": {
"coll": collection.name,
"pipeline": [
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": 5.0}},
{"$sample": {"size": amount}},
],
}}
])
# Chain the iterators
full = itertools.chain(terrible, negative, mixed, positive, great)
cursor = map(Review.from_mongoreview, cursor)
return cursor
# Convert reviews to datatuples
full = map(DataTuple.from_review, full)
return full
def sample_reviews_varied(collection: pymongo.collection.Collection, amount: int) -> t.Iterator[Review]:
log.debug("Getting a sample of %d varied reviews...", amount * 5)
# Wow, this is ugly.
cursor = collection.aggregate([
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": 1.0}},
{"$sample": {"size": amount}},
{"$unionWith": {
"coll": collection.name,
"pipeline": [
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": 2.0}},
{"$sample": {"size": amount}},
{"$unionWith": {
"coll": collection.name,
"pipeline": [
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": 3.0}},
{"$sample": {"size": amount}},
{"$unionWith": {
"coll": collection.name,
"pipeline": [
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": 4.0}},
{"$sample": {"size": amount}},
{"$unionWith": {
"coll": collection.name,
"pipeline": [
{"$limit": WORKING_SET_SIZE.__wrapped__},
{"$match": {"overall": 5.0}},
{"$sample": {"size": amount}},
],
}}
],
}}
],
}}
],
}}
])
cursor = map(Review.from_mongoreview, cursor)
return cursor
__all__ = (
"Review",
"Text",
"Category",
"DataTuple",
"DataSet",
"Review",
"DatasetFunc",
"mongo_client_from_config",
"mongo_reviews_collection_from_config",
"sample_reviews",
"sample_reviews_by_rating",
"polar_dataset",
"varied_dataset",
"sample_reviews_polar",
"sample_reviews_varied",
)