1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-21 23:44:19 +00:00

Now I understand text vectorization (but this still does not work)

This commit is contained in:
Steffo 2023-02-06 01:12:30 +01:00
parent 3abba24ca2
commit e9a4421acd
Signed by: steffo
GPG key ID: 2A24051445686895
2 changed files with 36 additions and 45 deletions

View file

@ -5,7 +5,7 @@
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="CONFIRM_OVERWRITE" value="False" />
<env name="DATA_SET_SIZE" value="750" />
<env name="DATA_SET_SIZE" value="100" />
<env name="NLTK_DATA" value="./data/nltk" />
<env name="PYTHONUNBUFFERED" value="1" />
<env name="WORKING_SET_SIZE" value="1000000" />

View file

@ -1,47 +1,23 @@
import tensorflow
import itertools
import typing as t
from ..database import Text, Category, Review, DatasetFunc
from ..tokenizer import BaseTokenizer
from ..database import Text, Category, DatasetFunc
from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError
class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer):
def __init__(self, *, tokenizer: BaseTokenizer):
def __init__(self, *args, **kwargs):
super().__init__()
self.trained = False
self.neural_network: tensorflow.keras.Sequential | None = None
self.tokenizer: BaseTokenizer = tokenizer # TODO
self.trained: bool = False
MAX_FEATURES = 20000
EMBEDDING_DIM = 16
EPOCHS = 10
def train(self, dataset_func: DatasetFunc) -> None:
if self.trained:
raise AlreadyTrainedError()
def dataset_func_with_tensor_text():
for review in dataset_func():
yield review.to_tensor_text()
text_set = tensorflow.data.Dataset.from_generator(
dataset_func_with_tensor_text,
output_signature=tensorflow.TensorSpec(shape=(), dtype=tensorflow.string)
)
text_vectorization_layer = tensorflow.keras.layers.TextVectorization(
max_tokens=self.MAX_FEATURES,
standardize=self.tokenizer.tokenize_tensorflow,
)
text_vectorization_layer.adapt(text_set)
self.text_vectorization_layer: tensorflow.keras.layers.TextVectorization = self._build_vectorizer()
self.model: tensorflow.keras.Sequential = self._build_model()
def _build_dataset(self, dataset_func: DatasetFunc) -> tensorflow.data.Dataset:
def dataset_func_with_tensor_tuple():
for review in dataset_func():
yield review.to_tensor_tuple()
training_set = tensorflow.data.Dataset.from_generator(
return tensorflow.data.Dataset.from_generator(
dataset_func_with_tensor_tuple,
output_signature=(
tensorflow.TensorSpec(shape=(), dtype=tensorflow.string, name="text"),
@ -49,26 +25,41 @@ class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer):
)
)
# I have no idea of what I'm doing here
self.neural_network = tensorflow.keras.Sequential([
tensorflow.keras.layers.Embedding(self.MAX_FEATURES + 1, self.EMBEDDING_DIM),
def _build_model(self) -> tensorflow.keras.Sequential:
return tensorflow.keras.Sequential([
tensorflow.keras.layers.Embedding(input_dim=self.MAX_FEATURES + 1, output_dim=self.EMBEDDING_DIM),
tensorflow.keras.layers.Dropout(0.2),
tensorflow.keras.layers.GlobalAveragePooling1D(),
tensorflow.keras.layers.Dropout(0.2),
tensorflow.keras.layers.Dense(1),
])
self.neural_network.compile(
loss=tensorflow.losses.BinaryCrossentropy(from_logits=True), # Only works with two tags
metrics=tensorflow.metrics.BinaryAccuracy(threshold=0.0)
)
def _build_vectorizer(self) -> tensorflow.keras.layers.TextVectorization:
return tensorflow.keras.layers.TextVectorization(max_tokens=self.MAX_FEATURES)
training_set = training_set.map(text_vectorization_layer)
def __vectorize_data(self, text, category):
text = tensorflow.expand_dims(text, -1) # TODO: ??????
return self.text_vectorization_layer(text), category
self.neural_network.fit(
training_set,
epochs=self.EPOCHS,
)
MAX_FEATURES = 1000
EMBEDDING_DIM = 16
EPOCHS = 10
def train(self, dataset_func: DatasetFunc) -> None:
if self.trained:
raise AlreadyTrainedError()
training_set = self._build_dataset(dataset_func)
only_text_set = training_set.map(lambda text, category: text)
self.text_vectorization_layer.adapt(only_text_set)
training_set = training_set.map(self.__vectorize_data)
self.model.compile(loss=tensorflow.keras.losses.CosineSimilarity(axis=0), metrics=["accuracy"])
history = self.model.fit(training_set, epochs=self.EPOCHS)
...
self.trained = True
@ -76,5 +67,5 @@ class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer):
if not self.trained:
raise NotTrainedError()
prediction = self.neural_network.predict(text)
prediction = self.model.predict(text)
breakpoint()