import typing as t import pymongo import pymongo.collection import contextlib import bson import logging from .config import MONGO_HOST, MONGO_PORT, TRAINING_SET_SIZE, TEST_SET_SIZE log = logging.getLogger(__name__) class Review(t.TypedDict): _id: bson.ObjectId reviewerID: str asin: str reviewerName: str helpful: tuple[int, int] reviewText: str overall: float summary: str unixReviewTime: int reviewTime: str @contextlib.contextmanager def mongo_client_from_config() -> t.ContextManager[pymongo.MongoClient]: """ Create a new MongoDB client and yield it. """ log.debug("Opening connection to MongoDB...") client = pymongo.MongoClient( host=MONGO_HOST.__wrapped__, port=MONGO_PORT.__wrapped__, ) log.info("Opened connection to MongoDB: %s", client) yield client log.info("Closing connection to MongoDB: %s", client) client.close() log.debug("Closed connection to MongoDB!") @contextlib.contextmanager def mongo_reviews_collection_from_config() -> pymongo.collection.Collection[Review]: """ Create a new MongoDB client, access the ``reviews`` collection in the ``reviews`` database, and yield it. """ with mongo_client_from_config() as db: log.debug("Accessing the reviews collection...") collection = db.reviews.reviews log.debug("Collection accessed successfully: %s", collection) yield collection def sample_reviews(reviews: pymongo.collection.Collection, amount: int) -> t.Iterable[Review]: """ Get ``amount`` random reviews from the ``reviews`` collection. """ log.debug("Getting a sample of %d reviews...", amount) return reviews.aggregate([ {"$limit": 10000}, # TODO {"$sample": {"size": amount}}, ]) def sample_reviews_by_rating(reviews: pymongo.collection.Collection, rating: float, amount: int) -> t.Iterable[Review]: """ Get ``amount`` random reviews with ``rating`` stars from the ``reviews`` collection. """ log.debug("Getting a sample of %d reviews with %d stars...", amount, rating) return reviews.aggregate([ {"$limit": 10000}, # TODO {"$match": {"overall": rating}}, {"$sample": {"size": amount}}, ]) def sample_reviews_by_rating_polar(reviews: pymongo.collection.Collection, amount: int) -> t.Iterable[Review]: """ Get ``amount`` random reviews with either a 5-star or 1-star rating from the ``reviews`` collection. """ log.debug("Getting a sample of %d reviews with either 5 or 1 stars...", amount) return reviews.aggregate([ {"$limit": 10000}, # TODO {"$match": {"$or": [ {"overall": 1.0}, {"overall": 5.0}, ] }, }, {"$sample": {"size": amount}}, ]) def get_training_reviews(collection: pymongo.collection.Collection) -> list[Review]: """ Get the subset of reviews that should act as training set. """ log.info("Building training set...") # Get the amount from the config amount: int = TRAINING_SET_SIZE.__wrapped__ # Handle odd numbers positive_amount: int = amount // 2 negative_amount: int = amount - positive_amount # Sample the required reviews positive = sample_reviews_by_rating(collection, 5.0, positive_amount) negative = sample_reviews_by_rating(collection, 1.0, negative_amount) # Randomness here does not matter, so just merge the lists both = [*positive, *negative] return both def get_test_reviews(collection: pymongo.collection.Collection) -> list[Review]: """ Get the subset of reviews that should act as test set. """ log.info("Building test set...") amount: int = TEST_SET_SIZE.__wrapped__ return list(sample_reviews_by_rating_polar(collection, amount)) __all__ = ( "Review", "mongo_client_from_config", "mongo_reviews_collection_from_config", "sample_reviews", "sample_reviews_by_rating", "sample_reviews_by_rating_polar", "get_training_reviews", "get_test_reviews", )