import nltk import nltk.classify import nltk.sentiment import nltk.sentiment.util import logging import typing as t import itertools from ..database import Text, Category, Review, CachedDatasetFunc from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError from ..log import count_passage from ..tokenizer import BaseTokenizer log = logging.getLogger(__name__) TokenBag = list[str] Features = dict[str, int] class NLTKSentimentAnalyzer(BaseSentimentAnalyzer): """ A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK. """ def __init__(self, *, tokenizer: BaseTokenizer) -> None: if not tokenizer.supports_plain(): raise TypeError("Tokenizer does not support NLTK") super().__init__(tokenizer=tokenizer) self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer() self.trained: bool = False self.tokenizer: BaseTokenizer = tokenizer def __repr__(self): return f"<{self.__class__.__qualname__} tokenizer={self.tokenizer!r}>" def __tokenize_review(self, datatuple: Review) -> tuple[TokenBag, Category]: """ Convert the `Text` of a `DataTuple` to a `TokenBag`. """ count_passage(log, "tokenize_datatuple", 100) return self.tokenizer.tokenize_plain(datatuple.text), datatuple.category def _add_feature_unigrams(self, dataset: t.Iterator[tuple[TokenBag, Category]]) -> None: """ Register the `nltk.sentiment.util.extract_unigram_feats` feature extrator on the model. """ # Ignore the category and only access the tokens tokenbags = map(lambda d: d[0], dataset) # Get all words in the documents all_words = self.model.all_words(tokenbags, labeled=False) # Create unigram `contains(*)` features from the previously gathered words unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4) # Add the feature extractor to the model self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams) def _add_feature_extractors(self, dataset: t.Iterator[tuple[TokenBag, Category]]): """ Register new feature extractors on the `.model`. """ # Add the unigrams feature self._add_feature_unigrams(dataset) def __extract_features(self, data: tuple[TokenBag, Category]) -> tuple[Features, Category]: """ Convert a (TokenBag, Category) tuple to a (Features, Category) tuple. Does not use `SentimentAnalyzer.apply_features` due to unexpected behaviour when using iterators. """ count_passage(log, "extract_features", 100) return self.model.extract_features(data[0]), data[1] def train(self, training_dataset_func: CachedDatasetFunc, validation_dataset_func: CachedDatasetFunc) -> None: # Forbid retraining the model if self.trained: raise AlreadyTrainedError() # Get a generator dataset: t.Generator[Review] = training_dataset_func() # Tokenize the dataset dataset: t.Iterator[tuple[TokenBag, Category]] = map(self.__tokenize_review, dataset) # Cleanly duplicate the dataset iterator # Reduce average memory footprint, but not maximum dataset_1, dataset_2 = itertools.tee(dataset, 2) dataset_1: t.Iterator[tuple[TokenBag, Category]] dataset_2: t.Iterator[tuple[TokenBag, Category]] # Add the feature extractors to the model self._add_feature_extractors(dataset_1) del dataset_1 # Delete exausted iterator # Extract features from the dataset dataset_2: t.Iterator[tuple[Features, Category]] = map(self.__extract_features, dataset_2) # Train the classifier with the extracted features and category self.model.classifier = nltk.classify.NaiveBayesClassifier.train(dataset_2) # Toggle the trained flag self.trained = True def use(self, text: Text) -> Category: # Require the model to be trained if not self.trained: raise NotTrainedError() # Tokenize the input tokens = self.tokenizer.tokenize_plain(text) # Run the classification method return self.model.classify(instance=tokens) __all__ = ( "NLTKSentimentAnalyzer", )