import abc import logging import dataclasses from ..database import Text, Category, DatasetFunc log = logging.getLogger(__name__) @dataclasses.dataclass class EvaluationResults: correct: int evaluated: int score: float def __repr__(self): return f"" def __str__(self): return f"{self.evaluated} evaluated, {self.correct} correct, {self.correct / self.evaluated * 100:.2} % accuracy, {self.score:.2} score, {self.score / self.evaluated * 100:.2} scoreaccuracy" class BaseSentimentAnalyzer(metaclass=abc.ABCMeta): """ Abstract base class for sentiment analyzers implemented in this project. """ @abc.abstractmethod def train(self, dataset_func: DatasetFunc) -> None: """ Train the analyzer with the given training dataset. """ raise NotImplementedError() def evaluate(self, dataset_func: DatasetFunc) -> EvaluationResults: """ Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category. Returns a tuple with the number of correct results and the number of evaluated results. """ evaluated: int = 0 correct: int = 0 score: float = 0.0 for review in dataset_func(): resulting_category = self.use(review.text) evaluated += 1 correct += 1 if resulting_category == review.category else 0 score += 1 - (abs(resulting_category - review.category) / 4) if not evaluated % 100: temp_results = EvaluationResults(correct=correct, evaluated=evaluated, score=score) log.debug(f"{temp_results!s}") return EvaluationResults(correct=correct, evaluated=evaluated, score=score) @abc.abstractmethod def use(self, text: Text) -> Category: """ Run the model on the given input. """ raise NotImplementedError() class AlreadyTrainedError(Exception): """ This model has already been trained and cannot be trained again. """ class NotTrainedError(Exception): """ This model has not been trained yet. """ class TrainingFailedError(Exception): """ The model wasn't able to complete the training and should not be used anymore. """ __all__ = ( "BaseSentimentAnalyzer", "AlreadyTrainedError", "NotTrainedError", "TrainingFailedError", )