import logging import pymongo.errors import gc from .log import install_general_log_handlers install_general_log_handlers() from .config import config, TARGET_RUNS, MAXIMUM_RUNS from .database import mongo_client_from_config, reviews_collection, sample_reviews_polar, sample_reviews_varied from .analysis import NLTKSentimentAnalyzer, TensorflowCategorySentimentAnalyzer, TensorflowPolarSentimentAnalyzer, ThreeCheat from .analysis.base import TrainingFailedError, EvaluationResults from .tokenizer import PlainTokenizer, LowercaseTokenizer, NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, HuggingBertTokenizer from .gathering import Caches log = logging.getLogger(__name__) def main(): log.info("Started unimore-bda-6 in %s mode!", "DEBUG" if __debug__ else "PRODUCTION") log.debug("Validating configuration...") config.proxies.resolve() log.debug("Ensuring there are no leftover caches...") Caches.ensure_clean() with mongo_client_from_config() as db: try: db.admin.command("ping") except pymongo.errors.ServerSelectionTimeoutError: log.fatal("MongoDB database is not available, exiting...") exit(1) for sample_func in [ sample_reviews_polar, sample_reviews_varied, ]: slog = logging.getLogger(f"{__name__}.{sample_func.__name__}") slog.debug("Selected sample_func: %s", sample_func.__name__) for SentimentAnalyzer in [ # ThreeCheat, NLTKSentimentAnalyzer, TensorflowPolarSentimentAnalyzer, TensorflowCategorySentimentAnalyzer, ]: slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}") slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__) for Tokenizer in [ PlainTokenizer, LowercaseTokenizer, NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, HuggingBertTokenizer, ]: log.debug("Running garbage collection...") garbage_count = gc.collect() log.debug("Collected %d pieces of garbage!", garbage_count) slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}") slog.debug("Selected Tokenizer: %s", Tokenizer.__name__) runs = 0 successful_runs = 0 cumulative_evaluation_results = EvaluationResults() while True: slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}") if successful_runs >= TARGET_RUNS.__wrapped__: slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__) break if runs >= MAXIMUM_RUNS.__wrapped__: slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__) break runs += 1 slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}") slog.debug("Run #%d", runs) try: slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__) sa = SentimentAnalyzer(tokenizer=Tokenizer()) except TypeError: slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__) break with mongo_client_from_config() as db: reviews = reviews_collection(db) datasets_cm = Caches.from_database_samples(collection=reviews, sample_func=sample_func) datasets = datasets_cm.__enter__() try: try: slog.info("Training sentiment analyzer: %s", sa) sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation) except TrainingFailedError: slog.error("Training failed, trying again with a different dataset...") continue else: slog.info("Training succeeded!") slog.info("Evaluating sentiment analyzer: %s", sa) evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation) slog.info("Evaluation results: %s", evaluation_results) successful_runs += 1 cumulative_evaluation_results += evaluation_results break finally: datasets_cm.__exit__() slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results) if __name__ == "__main__": main()