import abc import typing as t import numpy import tensorflow import logging from ..database import Text, Category, CachedDatasetFunc, Review from ..config import TENSORFLOW_EMBEDDING_SIZE, TENSORFLOW_MAX_FEATURES, TENSORFLOW_EPOCHS from ..tokenizer import BaseTokenizer from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError, TrainingFailedError log = logging.getLogger(__name__) if len(tensorflow.config.list_physical_devices(device_type="GPU")) == 0: log.warning("Tensorflow reports no GPU acceleration available.") else: log.debug("Tensorflow successfully found GPU acceleration!") ConversionFunc = t.Callable[[Review], tensorflow.Tensor | tuple] def build_dataset(dataset_func: CachedDatasetFunc, conversion_func: ConversionFunc, output_signature: tensorflow.TensorSpec | tuple) -> tensorflow.data.Dataset: """ Convert a `CachedDatasetFunc` to a `tensorflow.data.Dataset`. """ def dataset_generator(): for review in dataset_func(): yield conversion_func(review) log.debug("Creating dataset...") dataset = tensorflow.data.Dataset.from_generator( dataset_generator, output_signature=output_signature, ) log.debug("Caching dataset...") dataset = dataset.cache() log.debug("Configuring dataset prefetch...") dataset = dataset.prefetch(buffer_size=tensorflow.data.AUTOTUNE) return dataset class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer, metaclass=abc.ABCMeta): """ Base class for a sentiment analyzer using `tensorflow`. """ def __init__(self, *, tokenizer: BaseTokenizer): if not tokenizer.supports_tensorflow(): raise TypeError("Tokenizer does not support Tensorflow") super().__init__(tokenizer=tokenizer) self.trained: bool = False self.failed: bool = False self.tokenizer: BaseTokenizer = tokenizer self.text_vectorization_layer: tensorflow.keras.layers.TextVectorization = self._build_text_vectorization_layer() self.model: tensorflow.keras.Sequential = self._build_model() self.history: tensorflow.keras.callbacks.History | None = None def _build_text_vectorization_layer(self) -> tensorflow.keras.layers.TextVectorization: """ Create a `tensorflow`-compatible `TextVectorization` layer. """ log.debug("Creating TextVectorization layer...") layer = tensorflow.keras.layers.TextVectorization( standardize=self.tokenizer.tokenize_tensorflow_and_expand_dims, max_tokens=TENSORFLOW_MAX_FEATURES.__wrapped__ ) log.debug("Created TextVectorization layer: %s", layer) return layer @abc.abstractmethod def _build_model(self) -> tensorflow.keras.Sequential: """ Create the `tensorflow.keras.Sequential` model that should be executed by this sentiment analyzer. """ raise NotImplementedError() @abc.abstractmethod def _build_dataset(self, dataset_func: CachedDatasetFunc) -> tensorflow.data.Dataset: """ Create a `tensorflow.data.Dataset` from the given `CachedDatasetFunc`. """ raise NotImplementedError() def _adapt_textvectorization(self, dataset: tensorflow.data.Dataset) -> None: """ Adapt the `.text_vectorization_layer` to the given dataset. """ log.debug("Preparing dataset to adapt %s...", self.text_vectorization_layer) dataset = dataset.map(lambda text, category: text) log.debug("Adapting %s...", self.text_vectorization_layer) self.text_vectorization_layer.adapt(dataset) def _vectorize_dataset(self, dataset: tensorflow.data.Dataset) -> tensorflow.data.Dataset: """ Apply the `.text_vectorization_layer` to the text in the dataset. """ def vectorize_entry(text, category): return self.text_vectorization_layer(text), category log.debug("Vectorizing dataset: %s", dataset) dataset = dataset.map(vectorize_entry) log.debug("Vectorized dataset: %s", dataset) return dataset def train(self, training_dataset_func: CachedDatasetFunc, validation_dataset_func: CachedDatasetFunc) -> None: if self.failed: log.error("Tried to train a failed model.") raise AlreadyTrainedError("Cannot re-train a failed model.") if self.trained: log.error("Tried to train an already trained model.") raise AlreadyTrainedError("Cannot re-train an already trained model.") training_set = self._build_dataset(training_dataset_func) validation_set = self._build_dataset(validation_dataset_func) self._adapt_textvectorization(training_set) training_set = self._vectorize_dataset(training_set) validation_set = self._vectorize_dataset(validation_set) log.info("Training: %s", self.model) self.history: tensorflow.keras.callbacks.History | None = self.model.fit( training_set, validation_data=validation_set, epochs=TENSORFLOW_EPOCHS.__wrapped__, callbacks=[ tensorflow.keras.callbacks.TerminateOnNaN() ], ) if len(self.history.epoch) < TENSORFLOW_EPOCHS.__wrapped__: log.error("Model %s training failed: only %d epochs computed", self.model, len(self.history.epoch)) self.failed = True raise TrainingFailedError() else: log.info("Model %s training succeeded!", self.model) self.trained = True @abc.abstractmethod def _translate_prediction(self, a: numpy.array) -> Category: """ Convert the results of `tensorflow.keras.Sequential.predict` into a `.Category`. """ raise NotImplementedError() def use(self, text: Text) -> Category: if self.failed: log.error("Tried to use a failed model.") raise NotTrainedError("Cannot use a failed model.") if not self.trained: log.error("Tried to use a non-trained model.") raise NotTrainedError("Cannot use a non-trained model.") vector = self.text_vectorization_layer(text) prediction = self.model.predict(vector, verbose=False) return self._translate_prediction(prediction) class TensorflowCategorySentimentAnalyzer(TensorflowSentimentAnalyzer): """ A `tensorflow`-based sentiment analyzer that considers each star rating as a separate category. """ def _build_dataset(self, dataset_func: CachedDatasetFunc) -> tensorflow.data.Dataset: return build_dataset( dataset_func=dataset_func, conversion_func=Review.to_tensor_tuple_category, output_signature=( tensorflow.TensorSpec(shape=(), dtype=tensorflow.string, name="text"), tensorflow.TensorSpec(shape=(1, 5,), dtype=tensorflow.float32, name="category_one_hot"), ), ) def _build_model(self) -> tensorflow.keras.Sequential: log.debug("Creating sequential categorizer model...") model = tensorflow.keras.Sequential([ tensorflow.keras.layers.Embedding( input_dim=TENSORFLOW_MAX_FEATURES.__wrapped__ + 1, output_dim=TENSORFLOW_EMBEDDING_SIZE.__wrapped__, ), tensorflow.keras.layers.Dropout(0.10), tensorflow.keras.layers.GlobalAveragePooling1D(), tensorflow.keras.layers.Dropout(0.10), tensorflow.keras.layers.Dense(5, activation="softmax"), ]) log.debug("Compiling model: %s", model) model.compile( optimizer=tensorflow.keras.optimizers.Adam(global_clipnorm=1.0), loss=tensorflow.keras.losses.CategoricalCrossentropy(), metrics=[ tensorflow.keras.metrics.CategoricalAccuracy(), ] ) log.debug("Compiled model: %s", model) return model def _translate_prediction(self, a: numpy.array) -> Category: max_i = None max_p = None for i, p in enumerate(iter(a[0])): if max_p is None or p > max_p: max_i = i max_p = p result = float(max_i) + 1.0 return result class TensorflowPolarSentimentAnalyzer(TensorflowSentimentAnalyzer): """ A `tensorflow`-based sentiment analyzer that uses the floating point value rating to get as close as possible to the correct category. """ def _build_dataset(self, dataset_func: CachedDatasetFunc) -> tensorflow.data.Dataset: return build_dataset( dataset_func=dataset_func, conversion_func=Review.to_tensor_tuple_normvalue, output_signature=( tensorflow.TensorSpec(shape=(), dtype=tensorflow.string, name="text"), tensorflow.TensorSpec(shape=(1,), dtype=tensorflow.float32, name="category"), ), ) def _build_model(self) -> tensorflow.keras.Sequential: log.debug("Creating sequential categorizer model...") model = tensorflow.keras.Sequential([ tensorflow.keras.layers.Embedding( input_dim=TENSORFLOW_MAX_FEATURES.__wrapped__ + 1, output_dim=TENSORFLOW_EMBEDDING_SIZE.__wrapped__, ), tensorflow.keras.layers.Dropout(0.10), tensorflow.keras.layers.GlobalAveragePooling1D(), tensorflow.keras.layers.Dropout(0.10), tensorflow.keras.layers.Dense(1), ]) log.debug("Compiling model: %s", model) model.compile( optimizer=tensorflow.keras.optimizers.Adadelta(global_clipnorm=1.0), loss=tensorflow.keras.losses.MeanSquaredError(), metrics=[ tensorflow.keras.metrics.MeanAbsoluteError(), ] ) log.debug("Compiled model: %s", model) return model def _translate_prediction(self, a: numpy.array) -> Category: return (a[0, 0] + 0.5) * 5 __all__ = ( "TensorflowSentimentAnalyzer", "TensorflowCategorySentimentAnalyzer", "TensorflowPolarSentimentAnalyzer", )