import tensorflow
import re
import html.entities
import typing as t
import nltk.sentiment.util
from .base import BaseTokenizer
class PottsTokenizer(BaseTokenizer):
"""
Tokenizer based on `Christopher Potts' tokenizer `_, released in 2011.
This module is released under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License: https://creativecommons.org/licenses/by-nc-sa/3.0/ .
"""
# noinspection RegExpRepeatedSpace
# language=pythonregexp
emoticon_re_string = r"""[<>]?[:;=8][\-o*']?[)\](\[dDpP/:}{@|\\]"""
emoticon_re = re.compile(emoticon_re_string)
words_re_string = "(" + "|".join([
# Emoticons:
emoticon_re_string
,
# Phone numbers:
# language=pythonregexp
r"""(?:[+]?[01][\s.-]*)?(?:[(]?\d{3}[\s.)-]*)?\d{3}[\-\s.]*\d{4}"""
,
# HTML tags:
# language=pythonregexp
r"""<[^>]+>"""
,
# Twitter username:
# language=pythonregexp
r"""@[\w_]+"""
,
# Twitter hashtags:
# language=pythonregexp
r"""#+[\w_]+[\w'_-]*[\w_]+"""
,
# Words with apostrophes or dashes
# language=pythonregexp
r"""[a-z][a-z'_-]+[a-z]"""
,
# Numbers, including fractions, decimals
# language=pythonregexp
r"""[+-]?\d+(?:[,/.:-]\d+)?"""
,
# Words without apostrophes or dashes
# language=pythonregexp
r"""[\w_]+"""
,
# Ellipsis dots
# language=pythonregexp
r"""[.](?:\s*[.])+"""
,
# Everything else that isn't whitespace
# language=pythonregexp
r"""\S+"""
]) + ")"
words_re = re.compile(words_re_string, re.I)
# language=pythonregexp
digit_re_string = r"\d+;"
digit_re = re.compile(digit_re_string)
# language=pythonregexp
alpha_re_string = r"&\w+;"
alpha_re = re.compile(alpha_re_string)
amp = "&"
@classmethod
def __html2string(cls, s: str) -> str:
"""
Internal metod that seeks to replace all the HTML entities in s with their corresponding characters.
"""
# First the digits:
ents = set(cls.digit_re.findall(s))
if len(ents) > 0:
for ent in ents:
entnum = ent[2:-1]
try:
entnum = int(entnum)
s = s.replace(ent, chr(entnum))
except (ValueError, KeyError):
pass
# Now the alpha versions:
ents = set(cls.alpha_re.findall(s))
ents = filter((lambda x: x != cls.amp), ents)
for ent in ents:
entname = ent[1:-1]
try:
s = s.replace(ent, chr(html.entities.name2codepoint[entname]))
except (ValueError, KeyError):
pass
s = s.replace(cls.amp, " and ")
return s
def tokenize_plain(self, text: str) -> str:
# Fix HTML character entitites
s = self.__html2string(text)
# Tokenize
words = self.words_re.findall(s)
# Possible alter the case, but avoid changing emoticons like :D into :d:
words = list(map(lambda x: x if self.emoticon_re.search(x) else x.lower(), words))
# Re-join words
result = " ".join(words)
# Return the result
return result
class PottsTokenizerWithNegation(PottsTokenizer):
def tokenize_plain(self, text: str) -> str:
words = super().tokenize_plain(text).split()
nltk.sentiment.util.mark_negation(words, shallow=True)
return " ".join(words)
__all__ = (
"PottsTokenizer",
"PottsTokenizerWithNegation",
)