import logging import tensorflow from .config import config, DATA_SET_SIZE from .database import mongo_client_from_config, reviews_collection, sample_reviews_polar, sample_reviews_varied, store_cache, load_cache from .analysis.nltk_sentiment import NLTKSentimentAnalyzer from .analysis.tf_text import TensorflowSentimentAnalyzer from .tokenizer import NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, LowercaseTokenizer from .log import install_log_handler log = logging.getLogger(__name__) def main(): if len(tensorflow.config.list_physical_devices(device_type="GPU")) == 0: log.warning("Tensorflow reports no GPU acceleration available.") else: log.debug("Tensorflow successfully found GPU acceleration!") for dataset_func in [sample_reviews_polar, sample_reviews_varied]: for SentimentAnalyzer in [TensorflowSentimentAnalyzer, NLTKSentimentAnalyzer]: for Tokenizer in [ # NLTKWordTokenizer, # PottsTokenizer, # PottsTokenizerWithNegation, LowercaseTokenizer, ]: tokenizer = Tokenizer() model = SentimentAnalyzer(tokenizer=tokenizer) with mongo_client_from_config() as db: log.debug("Finding the reviews MongoDB collection...") collection = reviews_collection(db) try: training_cache = load_cache("./data/training") evaluation_cache = load_cache("./data/evaluation") except FileNotFoundError: log.debug("Gathering datasets...") reviews_training = dataset_func(collection=collection, amount=DATA_SET_SIZE.__wrapped__) reviews_evaluation = dataset_func(collection=collection, amount=DATA_SET_SIZE.__wrapped__) log.debug("Caching datasets...") store_cache(reviews_training, "./data/training") store_cache(reviews_evaluation, "./data/evaluation") del reviews_training del reviews_evaluation training_cache = load_cache("./data/training") evaluation_cache = load_cache("./data/evaluation") log.debug("Caches stored and loaded successfully!") else: log.debug("Caches loaded successfully!") log.info("Training model: %s", model) model.train(training_cache) log.info("Evaluating model: %s", model) evaluation_results = model.evaluate(evaluation_cache) log.info("%s", evaluation_results) # try: # print("Manual testing for %s" % model) # print("Input an empty string to continue to the next model.") # while inp := input(): # print(model.use(inp)) # except KeyboardInterrupt: # pass if __name__ == "__main__": install_log_handler() config.proxies.resolve() main()