mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-25 17:24:20 +00:00
99 lines
2.7 KiB
Python
99 lines
2.7 KiB
Python
from __future__ import annotations
|
|
|
|
import abc
|
|
import logging
|
|
import dataclasses
|
|
|
|
from ..database import Text, Category, CachedDatasetFunc
|
|
from ..tokenizer import BaseTokenizer
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class BaseSentimentAnalyzer(metaclass=abc.ABCMeta):
|
|
"""
|
|
Abstract base class for sentiment analyzers implemented in this project.
|
|
"""
|
|
|
|
# noinspection PyUnusedLocal
|
|
def __init__(self, *, tokenizer: BaseTokenizer):
|
|
pass
|
|
|
|
def __repr__(self):
|
|
return f"<{self.__class__.__qualname__}>"
|
|
|
|
@abc.abstractmethod
|
|
def train(self, training_dataset_func: CachedDatasetFunc, validation_dataset_func: CachedDatasetFunc) -> None:
|
|
"""
|
|
Train the analyzer with the given training and validation datasets.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@abc.abstractmethod
|
|
def use(self, text: Text) -> Category:
|
|
"""
|
|
Run the model on the given input.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def evaluate(self, evaluation_dataset_func: CachedDatasetFunc) -> EvaluationResults:
|
|
"""
|
|
Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category.
|
|
|
|
Returns a tuple with the number of correct results and the number of evaluated results.
|
|
"""
|
|
|
|
evaluated: int = 0
|
|
correct: int = 0
|
|
score: float = 0.0
|
|
|
|
for review in evaluation_dataset_func():
|
|
resulting_category = self.use(review.text)
|
|
evaluated += 1
|
|
correct += 1 if resulting_category == review.category else 0
|
|
score += 1 - (abs(resulting_category - review.category) / 4)
|
|
|
|
return EvaluationResults(correct=correct, evaluated=evaluated, score=score)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class EvaluationResults:
|
|
"""
|
|
Container for the results of a dataset evaluation.
|
|
"""
|
|
|
|
correct: int
|
|
evaluated: int
|
|
score: float
|
|
|
|
def __repr__(self):
|
|
return f"<EvaluationResults: {self!s}>"
|
|
|
|
def __str__(self):
|
|
return f"{self.evaluated} evaluated, {self.correct} correct, {self.correct / self.evaluated:.2%} accuracy, {self.score:.2f} score, {self.score / self.evaluated:.2%} scoreaccuracy"
|
|
|
|
|
|
class AlreadyTrainedError(Exception):
|
|
"""
|
|
This model has already been trained and cannot be trained again.
|
|
"""
|
|
|
|
|
|
class NotTrainedError(Exception):
|
|
"""
|
|
This model has not been trained yet.
|
|
"""
|
|
|
|
|
|
class TrainingFailedError(Exception):
|
|
"""
|
|
The model wasn't able to complete the training and should not be used anymore.
|
|
"""
|
|
|
|
|
|
__all__ = (
|
|
"BaseSentimentAnalyzer",
|
|
"AlreadyTrainedError",
|
|
"NotTrainedError",
|
|
"TrainingFailedError",
|
|
)
|