1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-25 17:24:20 +00:00
bda-6-steffo/unimore_bda_6/__main__.py

94 lines
2.6 KiB
Python

import logging
from .config import config, DATA_SET_SIZE
from .database import Review, mongo_reviews_collection_from_config, dataset_polar, dataset_varied
from .analysis.vanilla import VanillaSA
from .tokenization import all_tokenizers
from .log import install_log_handler
log = logging.getLogger(__name__)
def review_vanilla_extractor(review: Review) -> tuple[str, float]:
"""
Extract review text and rating from a `Review`.
"""
return review["reviewText"], review["overall"]
def polar_categorizer(rating: float) -> str:
"""
Return the polar label corresponding to the given rating.
Possible categories are:
* negative (1.0, 2.0)
* positive (3.0, 4.0, 5.0)
* unknown (everything else)
"""
match rating:
case 1.0 | 2.0:
return "negative"
case 3.0 | 4.0 | 5.0:
return "positive"
case _:
return "unknown"
def varied_categorizer(rating: float) -> str:
"""
Return the "stars" label corresponding to the given rating.
Possible categories are:
* terrible (1.0)
* negative (2.0)
* mixed (3.0)
* positive (4.0)
* great (5.0)
* unknown (everything else)
"""
match rating:
case 1.0:
return "terrible"
case 2.0:
return "negative"
case 3.0:
return "mixed"
case 4.0:
return "positive"
case 5.0:
return "great"
case _:
return "unknown"
def main():
for dataset_func, categorizer in [
(dataset_polar, polar_categorizer),
(dataset_varied, varied_categorizer),
]:
for tokenizer in all_tokenizers:
with mongo_reviews_collection_from_config() as reviews:
reviews_training = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
reviews_evaluation = dataset_func(collection=reviews, amount=DATA_SET_SIZE.__wrapped__)
model = VanillaSA(extractor=review_vanilla_extractor, tokenizer=tokenizer, categorizer=categorizer)
log.info("Training model %s", model)
model.train(reviews_training)
log.info("Evaluating model %s", model)
evaluation = model.evaluate(reviews_evaluation)
log.info("Results of model %s: %s", tokenizer, evaluation)
try:
print("Model %s" % model)
while inp := input():
print(model.use(inp))
except KeyboardInterrupt:
pass
if __name__ == "__main__":
install_log_handler()
config.proxies.resolve()
main()