mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-28 18:54:20 +00:00
287 lines
11 KiB
Python
287 lines
11 KiB
Python
import abc
|
|
import typing as t
|
|
|
|
import numpy
|
|
import tensorflow
|
|
import logging
|
|
|
|
from ..database import CachedDatasetFunc, TextReview, TokenizedReview
|
|
from ..config import TENSORFLOW_EMBEDDING_SIZE, TENSORFLOW_MAX_FEATURES, TENSORFLOW_EPOCHS
|
|
from ..tokenizer import BaseTokenizer
|
|
from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError, TrainingFailedError
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
if len(tensorflow.config.list_physical_devices(device_type="GPU")) == 0:
|
|
log.warning("Tensorflow reports no GPU acceleration available.")
|
|
else:
|
|
log.debug("Tensorflow successfully found GPU acceleration!")
|
|
|
|
|
|
ConversionFunc = t.Callable[[TextReview], tensorflow.Tensor | tuple]
|
|
|
|
|
|
class TensorflowSentimentAnalyzer(BaseSentimentAnalyzer, metaclass=abc.ABCMeta):
|
|
"""
|
|
Base class for a sentiment analyzer using `tensorflow`.
|
|
"""
|
|
|
|
def __init__(self, *, tokenizer: BaseTokenizer):
|
|
super().__init__(tokenizer=tokenizer)
|
|
|
|
self.trained: bool = False
|
|
self.failed: bool = False
|
|
|
|
self.string_lookup_layer: tensorflow.keras.layers.StringLookup = tensorflow.keras.layers.StringLookup(max_tokens=TENSORFLOW_MAX_FEATURES.__wrapped__)
|
|
self.model: tensorflow.keras.Sequential = self._build_model()
|
|
self.history: tensorflow.keras.callbacks.History | None = None
|
|
|
|
@abc.abstractmethod
|
|
def _build_model(self) -> tensorflow.keras.Sequential:
|
|
"""
|
|
Create the `tensorflow.keras.Sequential` model that should be executed by this sentiment analyzer.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def _build_dataset(self, dataset_func: CachedDatasetFunc) -> tensorflow.data.Dataset:
|
|
"""
|
|
Create a `tensorflow.data.Dataset` from the given `CachedDatasetFunc`.
|
|
"""
|
|
|
|
def dataset_generator():
|
|
for review in dataset_func():
|
|
review: TextReview
|
|
review: TokenizedReview = self.tokenizer.tokenize_review(review)
|
|
tokens: tensorflow.Tensor = self._tokens_to_tensor(review.tokens)
|
|
rating: tensorflow.Tensor = self._rating_to_input(review.rating)
|
|
yield tokens, rating
|
|
|
|
log.debug("Creating dataset...")
|
|
dataset = tensorflow.data.Dataset.from_generator(
|
|
dataset_generator,
|
|
output_signature=(
|
|
tensorflow.TensorSpec(shape=(1, None,), dtype=tensorflow.string, name="tokens"),
|
|
self._ratingtensor_shape(),
|
|
),
|
|
)
|
|
|
|
log.debug("Caching dataset...")
|
|
dataset = dataset.cache()
|
|
|
|
log.debug("Configuring dataset prefetch...")
|
|
dataset = dataset.prefetch(buffer_size=tensorflow.data.AUTOTUNE)
|
|
|
|
return dataset
|
|
|
|
def _adapt_textvectorization(self, dataset: tensorflow.data.Dataset) -> None:
|
|
"""
|
|
Adapt the `.text_vectorization_layer` to the given dataset.
|
|
"""
|
|
log.debug("Preparing dataset to adapt %s...", self.string_lookup_layer)
|
|
dataset = dataset.map(lambda text, category: text)
|
|
log.debug("Adapting %s...", self.string_lookup_layer)
|
|
self.string_lookup_layer.adapt(dataset)
|
|
|
|
def train(self, training_dataset_func: CachedDatasetFunc, validation_dataset_func: CachedDatasetFunc) -> None:
|
|
if self.failed:
|
|
log.error("Tried to train a failed model.")
|
|
raise AlreadyTrainedError("Cannot re-train a failed model.")
|
|
if self.trained:
|
|
log.error("Tried to train an already trained model.")
|
|
raise AlreadyTrainedError("Cannot re-train an already trained model.")
|
|
|
|
log.debug("Building training dataset...")
|
|
training_set = self._build_dataset(training_dataset_func)
|
|
|
|
log.debug("Building validation dataset...")
|
|
validation_set = self._build_dataset(validation_dataset_func)
|
|
|
|
log.debug("Building vocabulary...")
|
|
vocabulary = training_set.map(lambda tokens, rating: tokens)
|
|
|
|
log.debug("Adapting lookup layer to the vocabulary...")
|
|
self.string_lookup_layer.adapt(vocabulary)
|
|
|
|
log.info("Training: %s", self.model)
|
|
self.history: tensorflow.keras.callbacks.History | None = self.model.fit(
|
|
training_set,
|
|
validation_data=validation_set,
|
|
epochs=TENSORFLOW_EPOCHS.__wrapped__,
|
|
callbacks=[
|
|
tensorflow.keras.callbacks.TerminateOnNaN()
|
|
],
|
|
)
|
|
|
|
if len(self.history.epoch) < TENSORFLOW_EPOCHS.__wrapped__:
|
|
log.error("Model %s training failed: only %d epochs computed", self.model, len(self.history.epoch))
|
|
self.failed = True
|
|
raise TrainingFailedError()
|
|
else:
|
|
log.info("Model %s training succeeded!", self.model)
|
|
self.trained = True
|
|
|
|
@staticmethod
|
|
def _tokens_to_tensor(tokens: t.Iterator[str]) -> tensorflow.Tensor:
|
|
"""
|
|
Convert an iterator of tokens to a `tensorflow.Tensor`.
|
|
"""
|
|
tensor = tensorflow.convert_to_tensor(
|
|
[list(tokens)],
|
|
dtype=tensorflow.string,
|
|
name="tokens"
|
|
)
|
|
return tensor
|
|
|
|
def use(self, text: str) -> float:
|
|
if self.failed:
|
|
raise NotTrainedError("Cannot use a failed model.")
|
|
if not self.trained:
|
|
raise NotTrainedError("Cannot use a non-trained model.")
|
|
|
|
tokens = self.tokenizer.tokenize(text)
|
|
tokens = self._tokens_to_tensor(tokens)
|
|
prediction = self.model.predict(tokens, verbose=False)
|
|
prediction = self._prediction_to_rating(prediction)
|
|
return prediction
|
|
|
|
@abc.abstractmethod
|
|
def _rating_to_input(self, rating: float) -> tensorflow.Tensor:
|
|
"""
|
|
Convert a review rating to a `tensorflow.Tensor`.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@abc.abstractmethod
|
|
def _ratingtensor_shape(self) -> tensorflow.TensorSpec:
|
|
"""
|
|
Returns the shape of the tensor output by `._rating_to_tensor` and accepted as input by `._tensor_to_rating`.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@abc.abstractmethod
|
|
def _prediction_to_rating(self, prediction: tensorflow.Tensor) -> float:
|
|
"""
|
|
Convert the results of `tensorflow.keras.Sequential.predict` into a review rating.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
|
|
class TensorflowCategorySentimentAnalyzer(TensorflowSentimentAnalyzer):
|
|
"""
|
|
A `tensorflow`-based sentiment analyzer that considers each star rating as a separate category.
|
|
"""
|
|
|
|
def _build_model(self) -> tensorflow.keras.Sequential:
|
|
log.debug("Creating sequential categorizer model...")
|
|
model = tensorflow.keras.Sequential([
|
|
self.string_lookup_layer,
|
|
tensorflow.keras.layers.Embedding(
|
|
input_dim=TENSORFLOW_MAX_FEATURES.__wrapped__ + 1,
|
|
output_dim=TENSORFLOW_EMBEDDING_SIZE.__wrapped__,
|
|
),
|
|
tensorflow.keras.layers.Dropout(0.25),
|
|
tensorflow.keras.layers.GlobalAveragePooling1D(),
|
|
tensorflow.keras.layers.Dropout(0.25),
|
|
tensorflow.keras.layers.Dense(8),
|
|
tensorflow.keras.layers.Dropout(0.25),
|
|
tensorflow.keras.layers.Dense(5, activation="softmax"),
|
|
])
|
|
|
|
log.debug("Compiling model: %s", model)
|
|
model.compile(
|
|
optimizer=tensorflow.keras.optimizers.Adam(clipnorm=1.0),
|
|
loss=tensorflow.keras.losses.CategoricalCrossentropy(),
|
|
metrics=[
|
|
tensorflow.keras.metrics.CategoricalAccuracy(),
|
|
]
|
|
)
|
|
|
|
log.debug("Compiled model: %s", model)
|
|
return model
|
|
|
|
def _rating_to_input(self, rating: float) -> tensorflow.Tensor:
|
|
tensor = tensorflow.convert_to_tensor(
|
|
[[
|
|
1.0 if rating == 1.0 else 0.0,
|
|
1.0 if rating == 2.0 else 0.0,
|
|
1.0 if rating == 3.0 else 0.0,
|
|
1.0 if rating == 4.0 else 0.0,
|
|
1.0 if rating == 5.0 else 0.0,
|
|
]],
|
|
dtype=tensorflow.float32,
|
|
name="rating_one_hot"
|
|
)
|
|
return tensor
|
|
|
|
def _ratingtensor_shape(self) -> tensorflow.TensorSpec:
|
|
spec = tensorflow.TensorSpec(shape=(1, 5), dtype=tensorflow.float32, name="rating_one_hot")
|
|
return spec
|
|
|
|
def _prediction_to_rating(self, prediction: tensorflow.Tensor) -> float:
|
|
best_prediction = None
|
|
best_prediction_index = None
|
|
|
|
for index, prediction in enumerate(iter(prediction[0])):
|
|
if best_prediction is None or prediction > best_prediction:
|
|
best_prediction = prediction
|
|
best_prediction_index = index
|
|
|
|
result = float(best_prediction_index) + 1.0
|
|
return result
|
|
|
|
|
|
class TensorflowPolarSentimentAnalyzer(TensorflowSentimentAnalyzer):
|
|
"""
|
|
A `tensorflow`-based sentiment analyzer that uses the floating point value rating to get as close as possible to the correct category.
|
|
"""
|
|
|
|
def _build_model(self) -> tensorflow.keras.Sequential:
|
|
log.debug("Creating sequential categorizer model...")
|
|
model = tensorflow.keras.Sequential([
|
|
self.string_lookup_layer,
|
|
tensorflow.keras.layers.Embedding(
|
|
input_dim=TENSORFLOW_MAX_FEATURES.__wrapped__ + 1,
|
|
output_dim=TENSORFLOW_EMBEDDING_SIZE.__wrapped__,
|
|
),
|
|
tensorflow.keras.layers.Dropout(0.25),
|
|
tensorflow.keras.layers.GlobalAveragePooling1D(),
|
|
tensorflow.keras.layers.Dropout(0.25),
|
|
tensorflow.keras.layers.Dense(8),
|
|
tensorflow.keras.layers.Dropout(0.25),
|
|
tensorflow.keras.layers.Dense(1, activation=tensorflow.keras.activations.sigmoid),
|
|
])
|
|
|
|
log.debug("Compiling model: %s", model)
|
|
model.compile(
|
|
optimizer=tensorflow.keras.optimizers.Adam(clipnorm=1.0),
|
|
loss=tensorflow.keras.losses.MeanAbsoluteError(),
|
|
)
|
|
|
|
log.debug("Compiled model: %s", model)
|
|
return model
|
|
|
|
def _rating_to_input(self, rating: float) -> tensorflow.Tensor:
|
|
normalized_rating = (rating - 1) / 4
|
|
tensor = tensorflow.convert_to_tensor(
|
|
[normalized_rating],
|
|
dtype=tensorflow.float32,
|
|
name="rating_value"
|
|
)
|
|
return tensor
|
|
|
|
def _ratingtensor_shape(self) -> tensorflow.TensorSpec:
|
|
spec = tensorflow.TensorSpec(shape=(1,), dtype=tensorflow.float32, name="rating_value")
|
|
return spec
|
|
|
|
def _prediction_to_rating(self, prediction: numpy.array) -> float:
|
|
rating: float = prediction[0, 0]
|
|
rating = 1.0 if rating < 0.5 else 5.0
|
|
return rating
|
|
|
|
|
|
__all__ = (
|
|
"TensorflowSentimentAnalyzer",
|
|
"TensorflowCategorySentimentAnalyzer",
|
|
"TensorflowPolarSentimentAnalyzer",
|
|
)
|