mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-24 08:44:19 +00:00
134 lines
6.5 KiB
Python
134 lines
6.5 KiB
Python
import logging
|
|
import pymongo.errors
|
|
import gc
|
|
from .log import install_general_log_handlers
|
|
|
|
install_general_log_handlers()
|
|
|
|
from .config import config, TARGET_RUNS, MAXIMUM_RUNS
|
|
from .database import mongo_client_from_config, reviews_collection, sample_reviews_polar, sample_reviews_varied
|
|
from .analysis import NLTKSentimentAnalyzer, TensorflowCategorySentimentAnalyzer, TensorflowPolarSentimentAnalyzer, ThreeCheat
|
|
from .analysis.base import TrainingFailedError, EvaluationResults
|
|
from .tokenizer import PlainTokenizer, LowercaseTokenizer, NLTKWordTokenizer, PottsTokenizer, PottsTokenizerWithNegation, HuggingBertTokenizer
|
|
from .gathering import Caches
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def main():
|
|
log.info("Started unimore-bda-6 in %s mode!", "DEBUG" if __debug__ else "PRODUCTION")
|
|
|
|
log.debug("Validating configuration...")
|
|
config.proxies.resolve()
|
|
|
|
log.debug("Ensuring there are no leftover caches...")
|
|
Caches.ensure_clean()
|
|
|
|
with open("./data/logs/results.tsv", "w") as file:
|
|
file.write("function\tanalyzer\ttokenizer\trun no\tmean absolute error\tmean squared error\tperfects\trecall 1\trecall 2\trecall 3\trecall 4\trecall 5\tprecision 1\tprecision 2\tprecision 3\tprecision 4\tprecision 5\n")
|
|
|
|
with mongo_client_from_config() as db:
|
|
try:
|
|
db.admin.command("ping")
|
|
except pymongo.errors.ServerSelectionTimeoutError:
|
|
log.fatal("MongoDB database is not available, exiting...")
|
|
exit(1)
|
|
|
|
for sample_func in [
|
|
sample_reviews_polar,
|
|
sample_reviews_varied,
|
|
]:
|
|
|
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}")
|
|
slog.debug("Selected sample_func: %s", sample_func.__name__)
|
|
|
|
for SentimentAnalyzer in [
|
|
ThreeCheat,
|
|
NLTKSentimentAnalyzer,
|
|
TensorflowPolarSentimentAnalyzer,
|
|
TensorflowCategorySentimentAnalyzer,
|
|
]:
|
|
|
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}")
|
|
slog.debug("Selected SentimentAnalyzer: %s", SentimentAnalyzer.__name__)
|
|
|
|
for Tokenizer in [
|
|
PlainTokenizer,
|
|
LowercaseTokenizer,
|
|
NLTKWordTokenizer,
|
|
PottsTokenizer,
|
|
PottsTokenizerWithNegation,
|
|
HuggingBertTokenizer,
|
|
]:
|
|
|
|
log.debug("Running garbage collection...")
|
|
garbage_count = gc.collect()
|
|
log.debug("Collected %d pieces of garbage!", garbage_count)
|
|
|
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
|
slog.debug("Selected Tokenizer: %s", Tokenizer.__name__)
|
|
|
|
runs = 0
|
|
successful_runs = 0
|
|
cumulative_evaluation_results = EvaluationResults()
|
|
|
|
while True:
|
|
|
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}")
|
|
|
|
if successful_runs >= TARGET_RUNS.__wrapped__:
|
|
slog.info("Reached target of %d runs, moving on...", TARGET_RUNS.__wrapped__)
|
|
break
|
|
|
|
if runs >= MAXIMUM_RUNS.__wrapped__:
|
|
slog.fatal("Exceeded %d runs, giving up and exiting...", MAXIMUM_RUNS.__wrapped__)
|
|
break
|
|
|
|
runs += 1
|
|
slog = logging.getLogger(f"{__name__}.{sample_func.__name__}.{SentimentAnalyzer.__name__}.{Tokenizer.__name__}.{runs}")
|
|
slog.debug("Run #%d", runs)
|
|
|
|
try:
|
|
slog.debug("Instantiating %s with %s...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
|
sa = SentimentAnalyzer(tokenizer=Tokenizer())
|
|
except TypeError:
|
|
slog.warning("%s is not supported by %s, skipping run...", SentimentAnalyzer.__name__, Tokenizer.__name__)
|
|
break
|
|
|
|
|
|
with mongo_client_from_config() as db:
|
|
reviews = reviews_collection(db)
|
|
datasets_cm = Caches.from_database_samples(collection=reviews, sample_func=sample_func)
|
|
datasets = datasets_cm.__enter__()
|
|
|
|
try:
|
|
try:
|
|
slog.info("Training sentiment analyzer: %s", sa)
|
|
sa.train(training_dataset_func=datasets.training, validation_dataset_func=datasets.validation)
|
|
|
|
except TrainingFailedError:
|
|
slog.error("Training failed, trying again with a different dataset...")
|
|
|
|
file.write(f"{sample_func.__name__}\t{SentimentAnalyzer.__name__}\t{Tokenizer.__name__}\t{runs}\t\t\t\t\t\t\t\t\t\t\t\t\t\n")
|
|
file.flush()
|
|
continue
|
|
|
|
else:
|
|
slog.info("Training succeeded!")
|
|
slog.info("Evaluating sentiment analyzer: %s", sa)
|
|
evaluation_results = sa.evaluate(evaluation_dataset_func=datasets.evaluation)
|
|
slog.info("Evaluation results: %s", evaluation_results)
|
|
|
|
file.write(f"{sample_func.__name__}\t{SentimentAnalyzer.__name__}\t{Tokenizer.__name__}\t{runs}\t{evaluation_results.mean_absolute_error()}\t{evaluation_results.mean_squared_error()}\t{evaluation_results.perfect_count()}\t{evaluation_results.recall(1.0)}\t{evaluation_results.recall(2.0)}\t{evaluation_results.recall(3.0)}\t{evaluation_results.recall(4.0)}\t{evaluation_results.recall(5.0)}\t{evaluation_results.precision(1.0)}\t{evaluation_results.precision(2.0)}\t{evaluation_results.precision(3.0)}\t{evaluation_results.precision(4.0)}\t{evaluation_results.precision(5.0)}\n")
|
|
file.flush()
|
|
|
|
successful_runs += 1
|
|
cumulative_evaluation_results += evaluation_results
|
|
finally:
|
|
datasets_cm.__exit__(None, None, None)
|
|
|
|
slog.info("Cumulative evaluation results: %s", cumulative_evaluation_results)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|