1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2024-11-24 08:44:19 +00:00
bda-6-steffo/unimore_bda_6/config.py
2023-02-14 02:25:38 +01:00

172 lines
3.8 KiB
Python

import cfig
config = cfig.Configuration()
@config.optional()
def MONGO_HOST(val: str | None) -> str:
"""
The hostname of the MongoDB database to connect to.
Defaults to `"127.0.0.1"`.
"""
return val or "127.0.0.1"
@config.optional()
def MONGO_PORT(val: str | None) -> int:
"""
The port of the MongoDB database to connect to.
Defaults to `27017`.
"""
if val is None:
return 27017
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def WORKING_SET_SIZE(val: str | None) -> int:
"""
The number of reviews to consider from the database.
Set this to a low number to prevent slowness due to the dataset's huge size.
Defaults to `1000000`.
"""
if val is None:
return 1000000
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def TRAINING_SET_SIZE(val: str | None) -> int:
"""
The number of reviews from each category to fetch for the training dataset.
Defaults to `4000`.
"""
if val is None:
return 4000
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def VALIDATION_SET_SIZE(val: str | None) -> int:
"""
The number of reviews from each category to fetch for the training dataset.
Defaults to `400`.
"""
if val is None:
return 400
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def EVALUATION_SET_SIZE(val: str | None) -> int:
"""
The number of reviews from each category to fetch for the evaluation dataset.
Defaults to `1000`.
"""
if val is None:
return 1000
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def TENSORFLOW_MAX_FEATURES(val: str | None) -> int:
"""
The maximum number of features to use in Tensorflow models.
Defaults to `300000`.
"""
if val is None:
return 300000
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def TENSORFLOW_EMBEDDING_SIZE(val: str | None) -> int:
"""
The size of the embeddings tensor to use in Tensorflow models.
Defaults to `12`.
"""
if val is None:
return 12
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def TENSORFLOW_EPOCHS(val: str | None) -> int:
"""
The number of epochs to train Tensorflow models for.
Defaults to `3`.
"""
if val is None:
return 3
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def TARGET_RUNS(val: str | None) -> int:
"""
The amount of successful runs to perform on a sample-model-tokenizer combination.
Defaults to `1`.
"""
if val is None:
return 1
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
@config.optional()
def MAXIMUM_RUNS(val: str | None) -> int:
"""
The maximum amount of runs to perform on a sample-model-tokenizer combination before skipping it.
Defaults to `25`.
"""
if val is None:
return 25
try:
return int(val)
except ValueError:
raise cfig.InvalidValueError("Not an int.")
__all__ = (
"config",
"MONGO_HOST",
"MONGO_PORT",
"WORKING_SET_SIZE",
"TRAINING_SET_SIZE",
"VALIDATION_SET_SIZE",
"EVALUATION_SET_SIZE",
"TENSORFLOW_MAX_FEATURES",
"TENSORFLOW_EMBEDDING_SIZE",
"TENSORFLOW_EPOCHS",
)
if __name__ == "__main__":
config.cli()