mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-25 17:24:20 +00:00
215 lines
6.7 KiB
Python
215 lines
6.7 KiB
Python
from __future__ import annotations
|
|
|
|
import abc
|
|
import logging
|
|
import collections
|
|
|
|
from ..database import CachedDatasetFunc
|
|
from ..tokenizer import BaseTokenizer
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class BaseSentimentAnalyzer(metaclass=abc.ABCMeta):
|
|
"""
|
|
Abstract base class for sentiment analyzers implemented in this project.
|
|
"""
|
|
|
|
def __init__(self, *, tokenizer: BaseTokenizer):
|
|
self.tokenizer: BaseTokenizer = tokenizer
|
|
|
|
def __repr__(self):
|
|
return f"<{self.__class__.__qualname__} with {self.tokenizer} tokenizer>"
|
|
|
|
@abc.abstractmethod
|
|
def train(self, training_dataset_func: CachedDatasetFunc, validation_dataset_func: CachedDatasetFunc) -> None:
|
|
"""
|
|
Train the analyzer with the given training and validation datasets.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@abc.abstractmethod
|
|
def use(self, text: str) -> float:
|
|
"""
|
|
Run the model on the given input, and return the predicted rating.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def evaluate(self, evaluation_dataset_func: CachedDatasetFunc) -> EvaluationResults:
|
|
"""
|
|
Perform a model evaluation by calling repeatedly `.use` on every text of the test dataset and by comparing its resulting category with the expected category.
|
|
"""
|
|
er = EvaluationResults()
|
|
for review in evaluation_dataset_func():
|
|
er.add(expected=review.rating, predicted=self.use(review.text))
|
|
return er
|
|
|
|
|
|
class EvaluationResults:
|
|
"""
|
|
Container for the results of a dataset evaluation.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.confusion_matrix: dict[float, dict[float, int]] = collections.defaultdict(lambda: collections.defaultdict(lambda: 0))
|
|
"""
|
|
Confusion matrix of the evaluation.
|
|
|
|
First key is the expected rating, second key is the output label.
|
|
"""
|
|
|
|
self.absolute_error_total: float = 0.0
|
|
"""
|
|
Sum of the absolute errors committed in the evaluation.
|
|
"""
|
|
|
|
self.squared_error_total: float = 0.0
|
|
"""
|
|
Sum of the squared errors committed in the evaluation.
|
|
"""
|
|
|
|
def __repr__(self) -> str:
|
|
return f"<EvaluationResults with {self.evaluated_count()} evaluated and {len(self.keys())} categories>"
|
|
|
|
def __str__(self) -> str:
|
|
text = [f"Evaluation results: {self.evaluated_count()} evaluated, {self.mean_absolute_error()} mean absolute error, {self.mean_squared_error()} mean squared error, "]
|
|
for key in self.keys():
|
|
text.append(f"{self.recall(key)} recall of {key}, ")
|
|
text.append(f"{self.precision(key)} precision of {key}, ")
|
|
text.append(f"{self.perfect_count()} perfect matches.")
|
|
return "".join(text)
|
|
|
|
def __add__(self, other: EvaluationResults) -> EvaluationResults:
|
|
new = self.__class__()
|
|
new.absolute_error_total = self.absolute_error_total + other.absolute_error_total
|
|
new.squared_error_total = self.squared_error_total + other.squared_error_total
|
|
for expected, value in self.confusion_matrix.items():
|
|
for predicted, amount in value.items():
|
|
new.confusion_matrix[expected][predicted] += amount
|
|
for expected, value in other.confusion_matrix.items():
|
|
for predicted, amount in value.items():
|
|
new.confusion_matrix[expected][predicted] += amount
|
|
return new
|
|
|
|
def keys(self) -> set[float]:
|
|
"""
|
|
Return all processed categories.
|
|
"""
|
|
keys: set[float] = set()
|
|
|
|
for expected, value in self.confusion_matrix.items():
|
|
keys.add(expected)
|
|
for predicted, _ in value.items():
|
|
keys.add(predicted)
|
|
|
|
return keys
|
|
|
|
def evaluated_count(self) -> int:
|
|
"""
|
|
Return the total number of evaluated reviews.
|
|
"""
|
|
total: int = 0
|
|
for row in self.confusion_matrix.values():
|
|
for el in row.values():
|
|
total += el
|
|
return total
|
|
|
|
def perfect_count(self) -> int:
|
|
"""
|
|
Return the total number of perfect reviews.
|
|
"""
|
|
total: int = 0
|
|
for key in self.keys():
|
|
total += self.confusion_matrix[key][key]
|
|
return total
|
|
|
|
def recall_count(self, rating: float) -> int:
|
|
"""
|
|
Return the number of reviews processed with the given rating.
|
|
"""
|
|
total: int = 0
|
|
for el in self.confusion_matrix[rating].values():
|
|
total += el
|
|
return total
|
|
|
|
def precision_count(self, rating: float) -> int:
|
|
"""
|
|
Return the number of reviews for which the model returned the given rating.
|
|
"""
|
|
total: int = 0
|
|
for col in self.confusion_matrix.values():
|
|
total += col[rating]
|
|
return total
|
|
|
|
def recall(self, rating: float) -> float:
|
|
"""
|
|
Return the recall for a given rating.
|
|
"""
|
|
try:
|
|
return self.confusion_matrix[rating][rating] / self.recall_count(rating)
|
|
except KeyError:
|
|
return float("NaN")
|
|
except ZeroDivisionError:
|
|
return float("inf")
|
|
|
|
def precision(self, rating: float) -> float:
|
|
"""
|
|
Return the precision for a given rating.
|
|
"""
|
|
try:
|
|
return self.confusion_matrix[rating][rating] / self.precision_count(rating)
|
|
except KeyError:
|
|
return float("NaN")
|
|
except ZeroDivisionError:
|
|
return float("inf")
|
|
|
|
def mean_absolute_error(self) -> float:
|
|
"""
|
|
Return the mean absolute error.
|
|
"""
|
|
return self.absolute_error_total / self.evaluated_count()
|
|
|
|
def mean_squared_error(self) -> float:
|
|
"""
|
|
Return the mean squared error.
|
|
"""
|
|
return self.squared_error_total / self.evaluated_count()
|
|
|
|
def add(self, expected: float, predicted: float) -> None:
|
|
"""
|
|
Count a new prediction.
|
|
"""
|
|
if expected == predicted:
|
|
log.log(11, "Expected %.1d*, predicted %.1d*", expected, predicted) # Success
|
|
else:
|
|
log.log(12, "Expected %.1d*, predicted %.1d*", expected, predicted) # Failure
|
|
|
|
self.confusion_matrix[expected][predicted] += 1
|
|
self.absolute_error_total += abs(expected - predicted)
|
|
self.squared_error_total += (expected - predicted) ** 2
|
|
|
|
|
|
class AlreadyTrainedError(Exception):
|
|
"""
|
|
This model has already been trained and cannot be trained again.
|
|
"""
|
|
|
|
|
|
class NotTrainedError(Exception):
|
|
"""
|
|
This model has not been trained yet.
|
|
"""
|
|
|
|
|
|
class TrainingFailedError(Exception):
|
|
"""
|
|
The model wasn't able to complete the training and should not be used anymore.
|
|
"""
|
|
|
|
|
|
__all__ = (
|
|
"BaseSentimentAnalyzer",
|
|
"AlreadyTrainedError",
|
|
"NotTrainedError",
|
|
"TrainingFailedError",
|
|
)
|