mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-22 16:04:18 +00:00
144 lines
4.2 KiB
Python
144 lines
4.2 KiB
Python
import re
|
|
import html.entities
|
|
import typing as t
|
|
import nltk.sentiment.util
|
|
|
|
from .base import BaseTokenizer
|
|
|
|
|
|
class PottsTokenizer(BaseTokenizer):
|
|
"""
|
|
Tokenizer based on `Christopher Potts' tokenizer <http://sentiment.christopherpotts.net/tokenizing.html>`_, released in 2011.
|
|
|
|
This class is released under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License: https://creativecommons.org/licenses/by-nc-sa/3.0/ .
|
|
"""
|
|
|
|
# noinspection RegExpRepeatedSpace
|
|
# language=pythonregexp
|
|
emoticon_re_string = r"""[<>]?[:;=8][\-o*']?[)\](\[dDpP/:}{@|\\]"""
|
|
|
|
emoticon_re = re.compile(emoticon_re_string)
|
|
|
|
words_re_string = "(" + "|".join([
|
|
# Emoticons:
|
|
emoticon_re_string
|
|
,
|
|
# Phone numbers:
|
|
# language=pythonregexp
|
|
r"""(?:[+]?[01][\s.-]*)?(?:[(]?\d{3}[\s.)-]*)?\d{3}[\-\s.]*\d{4}"""
|
|
,
|
|
# HTML tags:
|
|
# language=pythonregexp
|
|
r"""<[^>]+>"""
|
|
,
|
|
# Twitter username:
|
|
# language=pythonregexp
|
|
r"""@[\w_]+"""
|
|
,
|
|
# Twitter hashtags:
|
|
# language=pythonregexp
|
|
r"""#+[\w_]+[\w'_-]*[\w_]+"""
|
|
,
|
|
# Words with apostrophes or dashes
|
|
# language=pythonregexp
|
|
r"""[a-z][a-z'_-]+[a-z]"""
|
|
,
|
|
# Numbers, including fractions, decimals
|
|
# language=pythonregexp
|
|
r"""[+-]?\d+(?:[,/.:-]\d+)?"""
|
|
,
|
|
# Words without apostrophes or dashes
|
|
# language=pythonregexp
|
|
r"""[\w_]+"""
|
|
,
|
|
# Ellipsis dots
|
|
# language=pythonregexp
|
|
r"""[.](?:\s*[.])+"""
|
|
,
|
|
# Everything else that isn't whitespace
|
|
# language=pythonregexp
|
|
r"""\S+"""
|
|
]) + ")"
|
|
|
|
words_re = re.compile(words_re_string, re.I)
|
|
|
|
# language=pythonregexp
|
|
digit_re_string = r"&#\d+;"
|
|
|
|
digit_re = re.compile(digit_re_string)
|
|
|
|
# language=pythonregexp
|
|
alpha_re_string = r"&\w+;"
|
|
|
|
alpha_re = re.compile(alpha_re_string)
|
|
|
|
amp = "&"
|
|
|
|
@classmethod
|
|
def html_entities_to_chr(cls, s: str) -> str:
|
|
"""
|
|
Internal metod that seeks to replace all the HTML entities in s with their corresponding characters.
|
|
"""
|
|
# First the digits:
|
|
ents = set(cls.digit_re.findall(s))
|
|
if len(ents) > 0:
|
|
for ent in ents:
|
|
entnum = ent[2:-1]
|
|
try:
|
|
entnum = int(entnum)
|
|
s = s.replace(ent, chr(entnum))
|
|
except (ValueError, KeyError):
|
|
pass
|
|
# Now the alpha versions:
|
|
ents = set(cls.alpha_re.findall(s))
|
|
ents = filter((lambda x: x != cls.amp), ents)
|
|
for ent in ents:
|
|
entname = ent[1:-1]
|
|
try:
|
|
s = s.replace(ent, chr(html.entities.name2codepoint[entname]))
|
|
except (ValueError, KeyError):
|
|
pass
|
|
s = s.replace(cls.amp, " and ")
|
|
return s
|
|
|
|
@classmethod
|
|
def lower_but_preserve_emoticons(cls, word):
|
|
"""
|
|
Internal method which lowercases the word if it does not match `.emoticon_re`.
|
|
"""
|
|
if cls.emoticon_re.search(word):
|
|
return word
|
|
else:
|
|
return word.lower()
|
|
|
|
def tokenize(self, text: str) -> t.Iterator[str]:
|
|
# Fix HTML character entitites
|
|
text = self.html_entities_to_chr(text)
|
|
# Tokenize
|
|
tokens = self.words_re.findall(text)
|
|
# Possible alter the case, but avoid changing emoticons like :D into :d:
|
|
tokens = map(self.lower_but_preserve_emoticons, tokens)
|
|
# Convert to a list (sigh) the iterator
|
|
tokens = list(tokens)
|
|
# Return the result
|
|
return tokens
|
|
|
|
|
|
class PottsTokenizerWithNegation(PottsTokenizer):
|
|
"""
|
|
Version of `.PottsTokenizer` which after tokenizing applies `nltk.sentiment.util.mark_negation`.
|
|
"""
|
|
|
|
def tokenize(self, text: str) -> t.Iterator[str]:
|
|
# Apply the base tokenization
|
|
tokens = super().tokenize(text)
|
|
# Use nltk to mark negation
|
|
nltk.sentiment.util.mark_negation(tokens, shallow=True)
|
|
# Return the result
|
|
return tokens
|
|
|
|
|
|
__all__ = (
|
|
"PottsTokenizer",
|
|
"PottsTokenizerWithNegation",
|
|
)
|