1
Fork 0
mirror of https://github.com/Steffo99/unimore-bda-6.git synced 2025-02-16 14:13:59 +00:00
bda-6-steffo/unimore_bda_6/analysis/vanilla.py

99 lines
3.6 KiB
Python

import nltk
import nltk.classify
import nltk.sentiment
import nltk.sentiment.util
import logging
import typing as t
from .base import Input, Category, BaseSA, AlreadyTrainedError, NotTrainedError
TokenBag = list[str]
IntermediateValue = t.TypeVar("IntermediateValue")
log = logging.getLogger(__name__)
class VanillaSA(BaseSA):
"""
A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK.
"""
def __init__(self, *, extractor: t.Callable[[Input], tuple[str, Category]], tokenizer: t.Callable[[str], TokenBag], categorizer: t.Callable[[Input], Category]) -> None:
super().__init__()
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
self.trained: bool = False
self.extractor: t.Callable[[Input], tuple[str, IntermediateValue]] = extractor
self.tokenizer: t.Callable[[str], TokenBag] = tokenizer
self.categorizer: t.Callable[[IntermediateValue], Category] = categorizer
def __add_feature_unigrams(self, training_set: list[tuple[TokenBag, Category]]) -> None:
"""
Add the `nltk.sentiment.util.extract_unigram_feats` feature to the model.
"""
all_words = self.model.all_words(training_set, labeled=True)
unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4)
self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams)
def _add_features(self, training_set: list[tuple[TokenBag, Category]]):
"""
Add new features to the sentiment analyzer.
"""
self.__add_feature_unigrams(training_set)
def _train_from_dataset(self, dataset: list[tuple[TokenBag, Category]]) -> None:
"""
Train the model with the given training set.
"""
if self.trained:
raise AlreadyTrainedError()
self.__add_feature_unigrams(dataset)
training_set_with_features = self.model.apply_features(dataset, labeled=True)
self.model.train(trainer=nltk.classify.NaiveBayesClassifier.train, training_set=training_set_with_features)
self.trained = True
def _evaluate_from_dataset(self, dataset: list[tuple[TokenBag, Category]]) -> dict:
"""
Perform a model evaluation with the given test set.
"""
if not self.trained:
raise NotTrainedError()
test_set_with_features = self.model.apply_features(dataset, labeled=True)
return self.model.evaluate(test_set_with_features)
def _use_from_tokenbag(self, tokens: TokenBag) -> Category:
"""
Categorize the given token bag.
"""
if not self.trained:
raise NotTrainedError()
return self.model.classify(instance=tokens)
def _extract_data(self, inp: Input) -> tuple[TokenBag, Category]:
text, value = self.extractor(inp)
return self.tokenizer(text), self.categorizer(value)
def _extract_dataset(self, inp: list[Input]) -> list[tuple[TokenBag, Category]]:
return list(map(self._extract_data, inp))
def train(self, training_set: list[Input]) -> None:
dataset = self._extract_dataset(training_set)
self._train_from_dataset(dataset)
def evaluate(self, test_set: list[tuple[Input, Category]]) -> None:
dataset = self._extract_dataset(test_set)
return self._evaluate_from_dataset(dataset)
def use(self, text: Input) -> Category:
tokens = self.tokenizer(text)
return self._use_from_tokenbag(tokens)
__all__ = (
"VanillaSA",
)