mirror of
https://github.com/Steffo99/unimore-bda-6.git
synced 2024-11-24 16:54:20 +00:00
96 lines
3.5 KiB
Python
96 lines
3.5 KiB
Python
import nltk
|
|
import nltk.classify
|
|
import nltk.sentiment
|
|
import nltk.sentiment.util
|
|
import logging
|
|
import typing as t
|
|
|
|
from ..database import TextReview, CachedDatasetFunc, TokenizedReview
|
|
from .base import BaseSentimentAnalyzer, AlreadyTrainedError, NotTrainedError
|
|
from ..tokenizer import BaseTokenizer
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
TokenBag = list[str]
|
|
Features = dict[str, int]
|
|
|
|
|
|
class NLTKSentimentAnalyzer(BaseSentimentAnalyzer):
|
|
"""
|
|
A sentiment analyzer resembling the one implemented in structure the one implemented in the classroom, using the basic sentiment analyzer of NLTK.
|
|
"""
|
|
|
|
def __init__(self, *, tokenizer: BaseTokenizer) -> None:
|
|
super().__init__(tokenizer=tokenizer)
|
|
|
|
self.model: nltk.sentiment.SentimentAnalyzer = nltk.sentiment.SentimentAnalyzer()
|
|
self.trained: bool = False
|
|
|
|
def _add_feature_unigrams(self, dataset: t.Iterator[TokenizedReview]) -> None:
|
|
"""
|
|
Register the `nltk.sentiment.util.extract_unigram_feats` feature extrator on the model.
|
|
"""
|
|
# Ignore the category and only access the tokens
|
|
tokenbags = map(lambda r: r.tokens, dataset)
|
|
# Get all words in the documents
|
|
all_words = self.model.all_words(tokenbags, labeled=False)
|
|
# Create unigram `contains(*)` features from the previously gathered words
|
|
unigrams = self.model.unigram_word_feats(words=all_words, min_freq=4)
|
|
# Add the feature extractor to the model
|
|
self.model.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats, unigrams=unigrams)
|
|
|
|
def _add_feature_extractors(self, dataset: t.Iterator[TextReview]):
|
|
"""
|
|
Register new feature extractors on the `.model`.
|
|
"""
|
|
# Tokenize the reviews and collect the iterator to avoid breaking NLTK
|
|
dataset: t.Iterator[TokenizedReview] = map(self.tokenizer.tokenize_review, dataset)
|
|
# Add the unigrams feature
|
|
self._add_feature_unigrams(dataset)
|
|
|
|
def __extract_features(self, review: TextReview) -> tuple[Features, str]:
|
|
"""
|
|
Convert a TextReview to a (Features, str) tuple.
|
|
|
|
Does not use `SentimentAnalyzer.apply_features` due to unexpected behaviour when using iterators.
|
|
"""
|
|
review: TokenizedReview = self.tokenizer.tokenize_review(review)
|
|
return self.model.extract_features(review.tokens), str(review.rating)
|
|
|
|
def train(self, training_dataset_func: CachedDatasetFunc, validation_dataset_func: CachedDatasetFunc) -> None:
|
|
# Forbid retraining the model
|
|
if self.trained:
|
|
raise AlreadyTrainedError()
|
|
|
|
# Add the feature extractors to the model
|
|
self._add_feature_extractors(training_dataset_func())
|
|
|
|
# Extract features from the dataset
|
|
featureset: t.Iterator[tuple[Features, str]] = map(self.__extract_features, training_dataset_func())
|
|
|
|
# Train the classifier with the extracted features and category
|
|
self.model.classifier = nltk.classify.NaiveBayesClassifier.train(featureset)
|
|
|
|
# Toggle the trained flag
|
|
self.trained = True
|
|
|
|
def use(self, text: str) -> float:
|
|
# Require the model to be trained
|
|
if not self.trained:
|
|
raise NotTrainedError()
|
|
|
|
# Tokenize the input
|
|
tokens = self.tokenizer.tokenize(text)
|
|
|
|
# Run the classification method
|
|
rating = self.model.classify(instance=tokens)
|
|
|
|
# Convert the class back into a float
|
|
rating = float(rating)
|
|
|
|
return rating
|
|
|
|
|
|
__all__ = (
|
|
"NLTKSentimentAnalyzer",
|
|
)
|