1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-23 08:34:23 +00:00
hpc-2022-g3/OpenMP/apps/kmeans/cluster.c

113 lines
5.9 KiB
C
Raw Normal View History

2022-11-11 12:23:45 +00:00
/*****************************************************************************/
/*IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. */
/*By downloading, copying, installing or using the software you agree */
/*to this license. If you do not agree to this license, do not download, */
/*install, copy or use the software. */
/* */
/* */
/*Copyright (c) 2005 Northwestern University */
/*All rights reserved. */
/*Redistribution of the software in source and binary forms, */
/*with or without modification, is permitted provided that the */
/*following conditions are met: */
/* */
/*1 Redistributions of source code must retain the above copyright */
/* notice, this list of conditions and the following disclaimer. */
/* */
/*2 Redistributions in binary form must reproduce the above copyright */
/* notice, this list of conditions and the following disclaimer in the */
/* documentation and/or other materials provided with the distribution.*/
/* */
/*3 Neither the name of Northwestern University nor the names of its */
/* contributors may be used to endorse or promote products derived */
/* from this software without specific prior written permission. */
/* */
/*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS */
/*IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED */
/*TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND */
/*FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL */
/*NORTHWESTERN UNIVERSITY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, */
/*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/*(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR */
/*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
/*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, */
/*STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
/*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/*POSSIBILITY OF SUCH DAMAGE. */
/******************************************************************************/
/*************************************************************************/
/** File: cluster.c **/
/** Description: Takes as input a file, containing 1 data point per **/
/** per line, and performs a fuzzy c-means clustering **/
/** on the data. Fuzzy clustering is performed using **/
/** min to max clusters and the clustering that gets **/
/** the best score according to a compactness and **/
/** separation criterion are returned. **/
/** Author: Brendan McCane **/
/** James Cook University of North Queensland. **/
/** Australia. email: mccane@cs.jcu.edu.au **/
/** **/
/** Edited by: Jay Pisharath, Wei-keng Liao **/
/** Northwestern University. **/
/** **/
/** ================================================================ **/
/** **/
/** Edited by: Sang-Ha Lee **/
/** University of Virginia **/
/** **/
/** Description: No longer supports fuzzy c-means clustering; **/
/** only regular k-means clustering. **/
/** Simplified for main functionality: regular k-means **/
/** clustering. **/
/** **/
/*************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <math.h>
#include <float.h>
#include "kmeans.h"
/*---< cluster() >-----------------------------------------------------------*/
int cluster(int numObjects, /* number of input objects */
int numAttributes, /* size of attribute of each object */
float **attributes, /* [numObjects][numAttributes] */
int num_nclusters,
float threshold, /* in: */
float ***cluster_centres /* out: [best_nclusters][numAttributes] */
)
{
int nclusters;
int *membership;
float **tmp_cluster_centres;
membership = (int *)malloc(numObjects * sizeof(int));
nclusters = num_nclusters;
srand(7);
tmp_cluster_centres = kmeans_clustering(attributes,
numAttributes,
numObjects,
nclusters,
threshold,
membership);
if (*cluster_centres)
{
free((*cluster_centres)[0]);
free(*cluster_centres);
}
*cluster_centres = tmp_cluster_centres;
free(membership);
return 0;
}