mirror of
https://github.com/Steffo99/unimore-hpc-assignments.git
synced 2024-11-25 09:34:23 +00:00
474 lines
17 KiB
C++
474 lines
17 KiB
C++
|
// Copyright 2009, Andrew Corrigan, acorriga@gmu.edu
|
||
|
// This code is from the AIAA-2009-4001 paper
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
#include <cmath>
|
||
|
#include <omp.h>
|
||
|
|
||
|
struct float3
|
||
|
{
|
||
|
float x, y, z;
|
||
|
};
|
||
|
|
||
|
#ifndef block_length
|
||
|
#define block_length 1
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Options
|
||
|
*
|
||
|
*/
|
||
|
#define GAMMA 1.4
|
||
|
#define iterations 2000
|
||
|
|
||
|
#define NDIM 3
|
||
|
#define NNB 4
|
||
|
|
||
|
#define RK 3 // 3rd order RK
|
||
|
#define ff_mach 1.2
|
||
|
#define deg_angle_of_attack 0.0f
|
||
|
|
||
|
/*
|
||
|
* not options
|
||
|
*/
|
||
|
#define VAR_DENSITY 0
|
||
|
#define VAR_MOMENTUM 1
|
||
|
#define VAR_DENSITY_ENERGY (VAR_MOMENTUM + NDIM)
|
||
|
#define NVAR (VAR_DENSITY_ENERGY + 1)
|
||
|
|
||
|
#ifdef restrict
|
||
|
#define __restrict restrict
|
||
|
#else
|
||
|
#define __restrict
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Generic functions
|
||
|
*/
|
||
|
template <typename T>
|
||
|
T *alloc(int N)
|
||
|
{
|
||
|
return new T[N];
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void dealloc(T *array)
|
||
|
{
|
||
|
delete[] array;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void copy(T *dst, T *src, int N)
|
||
|
{
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
dst[i] = src[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dump(float *variables, int nel, int nelr)
|
||
|
{
|
||
|
{
|
||
|
std::ofstream file("density");
|
||
|
file << nel << " " << nelr << std::endl;
|
||
|
for (int i = 0; i < nel; i++)
|
||
|
file << variables[i + VAR_DENSITY * nelr] << std::endl;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
std::ofstream file("momentum");
|
||
|
file << nel << " " << nelr << std::endl;
|
||
|
for (int i = 0; i < nel; i++)
|
||
|
{
|
||
|
for (int j = 0; j != NDIM; j++)
|
||
|
file << variables[i + (VAR_MOMENTUM + j) * nelr] << " ";
|
||
|
file << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
std::ofstream file("density_energy");
|
||
|
file << nel << " " << nelr << std::endl;
|
||
|
for (int i = 0; i < nel; i++)
|
||
|
file << variables[i + VAR_DENSITY_ENERGY * nelr] << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void initialize_variables(int nelr, float *variables, float *ff_variable)
|
||
|
{
|
||
|
for (int i = 0; i < nelr; i++)
|
||
|
{
|
||
|
for (int j = 0; j < NVAR; j++)
|
||
|
variables[i + j * nelr] = ff_variable[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline void compute_flux_contribution(float &density, float3 &momentum, float &density_energy, float &pressure, float3 &velocity, float3 &fc_momentum_x, float3 &fc_momentum_y, float3 &fc_momentum_z, float3 &fc_density_energy)
|
||
|
{
|
||
|
fc_momentum_x.x = velocity.x * momentum.x + pressure;
|
||
|
fc_momentum_x.y = velocity.x * momentum.y;
|
||
|
fc_momentum_x.z = velocity.x * momentum.z;
|
||
|
|
||
|
fc_momentum_y.x = fc_momentum_x.y;
|
||
|
fc_momentum_y.y = velocity.y * momentum.y + pressure;
|
||
|
fc_momentum_y.z = velocity.y * momentum.z;
|
||
|
|
||
|
fc_momentum_z.x = fc_momentum_x.z;
|
||
|
fc_momentum_z.y = fc_momentum_y.z;
|
||
|
fc_momentum_z.z = velocity.z * momentum.z + pressure;
|
||
|
|
||
|
float de_p = density_energy + pressure;
|
||
|
fc_density_energy.x = velocity.x * de_p;
|
||
|
fc_density_energy.y = velocity.y * de_p;
|
||
|
fc_density_energy.z = velocity.z * de_p;
|
||
|
}
|
||
|
|
||
|
inline void compute_velocity(float &density, float3 &momentum, float3 &velocity)
|
||
|
{
|
||
|
velocity.x = momentum.x / density;
|
||
|
velocity.y = momentum.y / density;
|
||
|
velocity.z = momentum.z / density;
|
||
|
}
|
||
|
|
||
|
inline float compute_speed_sqd(float3 &velocity)
|
||
|
{
|
||
|
return velocity.x * velocity.x + velocity.y * velocity.y + velocity.z * velocity.z;
|
||
|
}
|
||
|
|
||
|
inline float compute_pressure(float &density, float &density_energy, float &speed_sqd)
|
||
|
{
|
||
|
return (float(GAMMA) - float(1.0f)) * (density_energy - float(0.5f) * density * speed_sqd);
|
||
|
}
|
||
|
|
||
|
inline float compute_speed_of_sound(float &density, float &pressure)
|
||
|
{
|
||
|
return std::sqrt(float(GAMMA) * pressure / density);
|
||
|
}
|
||
|
|
||
|
void compute_step_factor(int nelr, float *__restrict variables, float *areas, float *__restrict step_factors)
|
||
|
{
|
||
|
for (int blk = 0; blk < nelr / block_length; ++blk)
|
||
|
{
|
||
|
int b_start = blk * block_length;
|
||
|
int b_end = (blk + 1) * block_length > nelr ? nelr : (blk + 1) * block_length;
|
||
|
for (int i = b_start; i < b_end; i++)
|
||
|
{
|
||
|
float density = variables[i + VAR_DENSITY * nelr];
|
||
|
|
||
|
float3 momentum;
|
||
|
momentum.x = variables[i + (VAR_MOMENTUM + 0) * nelr];
|
||
|
momentum.y = variables[i + (VAR_MOMENTUM + 1) * nelr];
|
||
|
momentum.z = variables[i + (VAR_MOMENTUM + 2) * nelr];
|
||
|
|
||
|
float density_energy = variables[i + VAR_DENSITY_ENERGY * nelr];
|
||
|
float3 velocity;
|
||
|
compute_velocity(density, momentum, velocity);
|
||
|
float speed_sqd = compute_speed_sqd(velocity);
|
||
|
float pressure = compute_pressure(density, density_energy, speed_sqd);
|
||
|
float speed_of_sound = compute_speed_of_sound(density, pressure);
|
||
|
|
||
|
// dt = float(0.5f) * std::sqrt(areas[i]) / (||v|| + c).... but when we do time stepping, this later would need to be divided by the area, so we just do it all at once
|
||
|
step_factors[i] = float(0.5f) / (std::sqrt(areas[i]) * (std::sqrt(speed_sqd) + speed_of_sound));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void compute_flux(int nelr, int *elements_surrounding_elements, float *normals, float *variables, float *fluxes, float *ff_variable, float3 ff_flux_contribution_momentum_x, float3 ff_flux_contribution_momentum_y, float3 ff_flux_contribution_momentum_z, float3 ff_flux_contribution_density_energy)
|
||
|
{
|
||
|
const float smoothing_coefficient = float(0.2f);
|
||
|
|
||
|
for (int blk = 0; blk < nelr / block_length; ++blk)
|
||
|
{
|
||
|
int b_start = blk * block_length;
|
||
|
int b_end = (blk + 1) * block_length > nelr ? nelr : (blk + 1) * block_length;
|
||
|
for (int i = b_start; i < b_end; ++i)
|
||
|
{
|
||
|
float density_i = variables[i + VAR_DENSITY * nelr];
|
||
|
float3 momentum_i;
|
||
|
momentum_i.x = variables[i + (VAR_MOMENTUM + 0) * nelr];
|
||
|
momentum_i.y = variables[i + (VAR_MOMENTUM + 1) * nelr];
|
||
|
momentum_i.z = variables[i + (VAR_MOMENTUM + 2) * nelr];
|
||
|
|
||
|
float density_energy_i = variables[i + VAR_DENSITY_ENERGY * nelr];
|
||
|
|
||
|
float3 velocity_i;
|
||
|
compute_velocity(density_i, momentum_i, velocity_i);
|
||
|
float speed_sqd_i = compute_speed_sqd(velocity_i);
|
||
|
float speed_i = std::sqrt(speed_sqd_i);
|
||
|
float pressure_i = compute_pressure(density_i, density_energy_i, speed_sqd_i);
|
||
|
float speed_of_sound_i = compute_speed_of_sound(density_i, pressure_i);
|
||
|
float3 flux_contribution_i_momentum_x, flux_contribution_i_momentum_y, flux_contribution_i_momentum_z;
|
||
|
float3 flux_contribution_i_density_energy;
|
||
|
compute_flux_contribution(density_i, momentum_i, density_energy_i, pressure_i, velocity_i, flux_contribution_i_momentum_x, flux_contribution_i_momentum_y, flux_contribution_i_momentum_z, flux_contribution_i_density_energy);
|
||
|
|
||
|
float flux_i_density = float(0.0f);
|
||
|
float3 flux_i_momentum;
|
||
|
flux_i_momentum.x = float(0.0f);
|
||
|
flux_i_momentum.y = float(0.0f);
|
||
|
flux_i_momentum.z = float(0.0f);
|
||
|
float flux_i_density_energy = float(0.0f);
|
||
|
|
||
|
float3 velocity_nb;
|
||
|
float density_nb, density_energy_nb;
|
||
|
float3 momentum_nb;
|
||
|
float3 flux_contribution_nb_momentum_x, flux_contribution_nb_momentum_y, flux_contribution_nb_momentum_z;
|
||
|
float3 flux_contribution_nb_density_energy;
|
||
|
float speed_sqd_nb, speed_of_sound_nb, pressure_nb;
|
||
|
#pragma unroll
|
||
|
for (int j = 0; j < NNB; j++)
|
||
|
{
|
||
|
float3 normal;
|
||
|
float normal_len;
|
||
|
float factor;
|
||
|
|
||
|
int nb = elements_surrounding_elements[i + j * nelr];
|
||
|
normal.x = normals[i + (j + 0 * NNB) * nelr];
|
||
|
normal.y = normals[i + (j + 1 * NNB) * nelr];
|
||
|
normal.z = normals[i + (j + 2 * NNB) * nelr];
|
||
|
normal_len = std::sqrt(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z);
|
||
|
|
||
|
if (nb >= 0) // a legitimate neighbor
|
||
|
{
|
||
|
density_nb = variables[nb + VAR_DENSITY * nelr];
|
||
|
momentum_nb.x = variables[nb + (VAR_MOMENTUM + 0) * nelr];
|
||
|
momentum_nb.y = variables[nb + (VAR_MOMENTUM + 1) * nelr];
|
||
|
momentum_nb.z = variables[nb + (VAR_MOMENTUM + 2) * nelr];
|
||
|
density_energy_nb = variables[nb + VAR_DENSITY_ENERGY * nelr];
|
||
|
compute_velocity(density_nb, momentum_nb, velocity_nb);
|
||
|
speed_sqd_nb = compute_speed_sqd(velocity_nb);
|
||
|
pressure_nb = compute_pressure(density_nb, density_energy_nb, speed_sqd_nb);
|
||
|
speed_of_sound_nb = compute_speed_of_sound(density_nb, pressure_nb);
|
||
|
compute_flux_contribution(density_nb, momentum_nb, density_energy_nb, pressure_nb, velocity_nb, flux_contribution_nb_momentum_x, flux_contribution_nb_momentum_y, flux_contribution_nb_momentum_z, flux_contribution_nb_density_energy);
|
||
|
|
||
|
// artificial viscosity
|
||
|
factor = -normal_len * smoothing_coefficient * float(0.5f) * (speed_i + std::sqrt(speed_sqd_nb) + speed_of_sound_i + speed_of_sound_nb);
|
||
|
flux_i_density += factor * (density_i - density_nb);
|
||
|
flux_i_density_energy += factor * (density_energy_i - density_energy_nb);
|
||
|
flux_i_momentum.x += factor * (momentum_i.x - momentum_nb.x);
|
||
|
flux_i_momentum.y += factor * (momentum_i.y - momentum_nb.y);
|
||
|
flux_i_momentum.z += factor * (momentum_i.z - momentum_nb.z);
|
||
|
|
||
|
// accumulate cell-centered fluxes
|
||
|
factor = float(0.5f) * normal.x;
|
||
|
flux_i_density += factor * (momentum_nb.x + momentum_i.x);
|
||
|
flux_i_density_energy += factor * (flux_contribution_nb_density_energy.x + flux_contribution_i_density_energy.x);
|
||
|
flux_i_momentum.x += factor * (flux_contribution_nb_momentum_x.x + flux_contribution_i_momentum_x.x);
|
||
|
flux_i_momentum.y += factor * (flux_contribution_nb_momentum_y.x + flux_contribution_i_momentum_y.x);
|
||
|
flux_i_momentum.z += factor * (flux_contribution_nb_momentum_z.x + flux_contribution_i_momentum_z.x);
|
||
|
|
||
|
factor = float(0.5f) * normal.y;
|
||
|
flux_i_density += factor * (momentum_nb.y + momentum_i.y);
|
||
|
flux_i_density_energy += factor * (flux_contribution_nb_density_energy.y + flux_contribution_i_density_energy.y);
|
||
|
flux_i_momentum.x += factor * (flux_contribution_nb_momentum_x.y + flux_contribution_i_momentum_x.y);
|
||
|
flux_i_momentum.y += factor * (flux_contribution_nb_momentum_y.y + flux_contribution_i_momentum_y.y);
|
||
|
flux_i_momentum.z += factor * (flux_contribution_nb_momentum_z.y + flux_contribution_i_momentum_z.y);
|
||
|
|
||
|
factor = float(0.5f) * normal.z;
|
||
|
flux_i_density += factor * (momentum_nb.z + momentum_i.z);
|
||
|
flux_i_density_energy += factor * (flux_contribution_nb_density_energy.z + flux_contribution_i_density_energy.z);
|
||
|
flux_i_momentum.x += factor * (flux_contribution_nb_momentum_x.z + flux_contribution_i_momentum_x.z);
|
||
|
flux_i_momentum.y += factor * (flux_contribution_nb_momentum_y.z + flux_contribution_i_momentum_y.z);
|
||
|
flux_i_momentum.z += factor * (flux_contribution_nb_momentum_z.z + flux_contribution_i_momentum_z.z);
|
||
|
}
|
||
|
else if (nb == -1) // a wing boundary
|
||
|
{
|
||
|
flux_i_momentum.x += normal.x * pressure_i;
|
||
|
flux_i_momentum.y += normal.y * pressure_i;
|
||
|
flux_i_momentum.z += normal.z * pressure_i;
|
||
|
}
|
||
|
else if (nb == -2) // a far field boundary
|
||
|
{
|
||
|
factor = float(0.5f) * normal.x;
|
||
|
flux_i_density += factor * (ff_variable[VAR_MOMENTUM + 0] + momentum_i.x);
|
||
|
flux_i_density_energy += factor * (ff_flux_contribution_density_energy.x + flux_contribution_i_density_energy.x);
|
||
|
flux_i_momentum.x += factor * (ff_flux_contribution_momentum_x.x + flux_contribution_i_momentum_x.x);
|
||
|
flux_i_momentum.y += factor * (ff_flux_contribution_momentum_y.x + flux_contribution_i_momentum_y.x);
|
||
|
flux_i_momentum.z += factor * (ff_flux_contribution_momentum_z.x + flux_contribution_i_momentum_z.x);
|
||
|
|
||
|
factor = float(0.5f) * normal.y;
|
||
|
flux_i_density += factor * (ff_variable[VAR_MOMENTUM + 1] + momentum_i.y);
|
||
|
flux_i_density_energy += factor * (ff_flux_contribution_density_energy.y + flux_contribution_i_density_energy.y);
|
||
|
flux_i_momentum.x += factor * (ff_flux_contribution_momentum_x.y + flux_contribution_i_momentum_x.y);
|
||
|
flux_i_momentum.y += factor * (ff_flux_contribution_momentum_y.y + flux_contribution_i_momentum_y.y);
|
||
|
flux_i_momentum.z += factor * (ff_flux_contribution_momentum_z.y + flux_contribution_i_momentum_z.y);
|
||
|
|
||
|
factor = float(0.5f) * normal.z;
|
||
|
flux_i_density += factor * (ff_variable[VAR_MOMENTUM + 2] + momentum_i.z);
|
||
|
flux_i_density_energy += factor * (ff_flux_contribution_density_energy.z + flux_contribution_i_density_energy.z);
|
||
|
flux_i_momentum.x += factor * (ff_flux_contribution_momentum_x.z + flux_contribution_i_momentum_x.z);
|
||
|
flux_i_momentum.y += factor * (ff_flux_contribution_momentum_y.z + flux_contribution_i_momentum_y.z);
|
||
|
flux_i_momentum.z += factor * (ff_flux_contribution_momentum_z.z + flux_contribution_i_momentum_z.z);
|
||
|
}
|
||
|
}
|
||
|
fluxes[i + VAR_DENSITY * nelr] = flux_i_density;
|
||
|
fluxes[i + (VAR_MOMENTUM + 0) * nelr] = flux_i_momentum.x;
|
||
|
fluxes[i + (VAR_MOMENTUM + 1) * nelr] = flux_i_momentum.y;
|
||
|
fluxes[i + (VAR_MOMENTUM + 2) * nelr] = flux_i_momentum.z;
|
||
|
fluxes[i + VAR_DENSITY_ENERGY * nelr] = flux_i_density_energy;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void time_step(int j, int nelr, float *old_variables, float *variables, float *step_factors, float *fluxes)
|
||
|
{
|
||
|
for (int blk = 0; blk < nelr / block_length; ++blk)
|
||
|
{
|
||
|
int b_start = blk * block_length;
|
||
|
int b_end = (blk + 1) * block_length > nelr ? nelr : (blk + 1) * block_length;
|
||
|
for (int i = b_start; i < b_end; ++i)
|
||
|
{
|
||
|
float factor = step_factors[i] / float(RK + 1 - j);
|
||
|
|
||
|
variables[i + VAR_DENSITY * nelr] = old_variables[i + VAR_DENSITY * nelr] + factor * fluxes[i + VAR_DENSITY * nelr];
|
||
|
variables[i + (VAR_MOMENTUM + 0) * nelr] = old_variables[i + (VAR_MOMENTUM + 0) * nelr] + factor * fluxes[i + (VAR_MOMENTUM + 0) * nelr];
|
||
|
variables[i + (VAR_MOMENTUM + 1) * nelr] = old_variables[i + (VAR_MOMENTUM + 1) * nelr] + factor * fluxes[i + (VAR_MOMENTUM + 1) * nelr];
|
||
|
variables[i + (VAR_MOMENTUM + 2) * nelr] = old_variables[i + (VAR_MOMENTUM + 2) * nelr] + factor * fluxes[i + (VAR_MOMENTUM + 2) * nelr];
|
||
|
variables[i + VAR_DENSITY_ENERGY * nelr] = old_variables[i + VAR_DENSITY_ENERGY * nelr] + factor * fluxes[i + VAR_DENSITY_ENERGY * nelr];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Main function
|
||
|
*/
|
||
|
int main(int argc, char **argv)
|
||
|
{
|
||
|
if (argc < 2)
|
||
|
{
|
||
|
std::cout << "specify data file name" << std::endl;
|
||
|
return 0;
|
||
|
}
|
||
|
const char *data_file_name = argv[1];
|
||
|
|
||
|
float ff_variable[NVAR];
|
||
|
float3 ff_flux_contribution_momentum_x, ff_flux_contribution_momentum_y, ff_flux_contribution_momentum_z, ff_flux_contribution_density_energy;
|
||
|
|
||
|
// set far field conditions
|
||
|
{
|
||
|
const float angle_of_attack = float(3.1415926535897931 / 180.0f) * float(deg_angle_of_attack);
|
||
|
|
||
|
ff_variable[VAR_DENSITY] = float(1.4);
|
||
|
|
||
|
float ff_pressure = float(1.0f);
|
||
|
float ff_speed_of_sound = sqrt(GAMMA * ff_pressure / ff_variable[VAR_DENSITY]);
|
||
|
float ff_speed = float(ff_mach) * ff_speed_of_sound;
|
||
|
|
||
|
float3 ff_velocity;
|
||
|
ff_velocity.x = ff_speed * float(cos((float)angle_of_attack));
|
||
|
ff_velocity.y = ff_speed * float(sin((float)angle_of_attack));
|
||
|
ff_velocity.z = 0.0f;
|
||
|
|
||
|
ff_variable[VAR_MOMENTUM + 0] = ff_variable[VAR_DENSITY] * ff_velocity.x;
|
||
|
ff_variable[VAR_MOMENTUM + 1] = ff_variable[VAR_DENSITY] * ff_velocity.y;
|
||
|
ff_variable[VAR_MOMENTUM + 2] = ff_variable[VAR_DENSITY] * ff_velocity.z;
|
||
|
|
||
|
ff_variable[VAR_DENSITY_ENERGY] = ff_variable[VAR_DENSITY] * (float(0.5f) * (ff_speed * ff_speed)) + (ff_pressure / float(GAMMA - 1.0f));
|
||
|
|
||
|
float3 ff_momentum;
|
||
|
ff_momentum.x = *(ff_variable + VAR_MOMENTUM + 0);
|
||
|
ff_momentum.y = *(ff_variable + VAR_MOMENTUM + 1);
|
||
|
ff_momentum.z = *(ff_variable + VAR_MOMENTUM + 2);
|
||
|
compute_flux_contribution(ff_variable[VAR_DENSITY], ff_momentum, ff_variable[VAR_DENSITY_ENERGY], ff_pressure, ff_velocity, ff_flux_contribution_momentum_x, ff_flux_contribution_momentum_y, ff_flux_contribution_momentum_z, ff_flux_contribution_density_energy);
|
||
|
}
|
||
|
int nel;
|
||
|
int nelr;
|
||
|
|
||
|
// read in domain geometry
|
||
|
float *areas;
|
||
|
int *elements_surrounding_elements;
|
||
|
float *normals;
|
||
|
{
|
||
|
std::ifstream file(data_file_name);
|
||
|
|
||
|
file >> nel;
|
||
|
nelr = block_length * ((nel / block_length) + std::min(1, nel % block_length));
|
||
|
|
||
|
areas = new float[nelr];
|
||
|
elements_surrounding_elements = new int[nelr * NNB];
|
||
|
normals = new float[NDIM * NNB * nelr];
|
||
|
|
||
|
// read in data
|
||
|
for (int i = 0; i < nel; i++)
|
||
|
{
|
||
|
file >> areas[i];
|
||
|
for (int j = 0; j < NNB; j++)
|
||
|
{
|
||
|
file >> elements_surrounding_elements[i + j * nelr];
|
||
|
if (elements_surrounding_elements[i + j * nelr] < 0)
|
||
|
elements_surrounding_elements[i + j * nelr] = -1;
|
||
|
elements_surrounding_elements[i + j * nelr]--; // it's coming in with Fortran numbering
|
||
|
|
||
|
for (int k = 0; k < NDIM; k++)
|
||
|
{
|
||
|
file >> normals[i + (j + k * NNB) * nelr];
|
||
|
normals[i + (j + k * NNB) * nelr] = -normals[i + (j + k * NNB) * nelr];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// fill in remaining data
|
||
|
int last = nel - 1;
|
||
|
for (int i = nel; i < nelr; i++)
|
||
|
{
|
||
|
areas[i] = areas[last];
|
||
|
for (int j = 0; j < NNB; j++)
|
||
|
{
|
||
|
// duplicate the last element
|
||
|
elements_surrounding_elements[i + j * nelr] = elements_surrounding_elements[last + j * nelr];
|
||
|
for (int k = 0; k < NDIM; k++)
|
||
|
normals[i + (j + k * NNB) * nelr] = normals[last + (j + k * NNB) * nelr];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create arrays and set initial conditions
|
||
|
float *variables = alloc<float>(nelr * NVAR);
|
||
|
initialize_variables(nelr, variables, ff_variable);
|
||
|
|
||
|
float *old_variables = alloc<float>(nelr * NVAR);
|
||
|
float *fluxes = alloc<float>(nelr * NVAR);
|
||
|
float *step_factors = alloc<float>(nelr);
|
||
|
|
||
|
// these need to be computed the first time in order to compute time step
|
||
|
std::cout << "Starting..." << std::endl;
|
||
|
|
||
|
// Begin iterations
|
||
|
for (int i = 0; i < iterations; i++)
|
||
|
{
|
||
|
copy<float>(old_variables, variables, nelr * NVAR);
|
||
|
|
||
|
// for the first iteration we compute the time step
|
||
|
compute_step_factor(nelr, variables, areas, step_factors);
|
||
|
|
||
|
for (int j = 0; j < RK; j++)
|
||
|
{
|
||
|
compute_flux(nelr, elements_surrounding_elements, normals, variables, fluxes, ff_variable, ff_flux_contribution_momentum_x, ff_flux_contribution_momentum_y, ff_flux_contribution_momentum_z, ff_flux_contribution_density_energy);
|
||
|
time_step(j, nelr, old_variables, variables, step_factors, fluxes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::cout << "Saving solution..." << std::endl;
|
||
|
dump(variables, nel, nelr);
|
||
|
std::cout << "Saved solution..." << std::endl;
|
||
|
|
||
|
std::cout << "Cleaning up..." << std::endl;
|
||
|
dealloc<float>(areas);
|
||
|
dealloc<int>(elements_surrounding_elements);
|
||
|
dealloc<float>(normals);
|
||
|
|
||
|
dealloc<float>(variables);
|
||
|
dealloc<float>(old_variables);
|
||
|
dealloc<float>(fluxes);
|
||
|
dealloc<float>(step_factors);
|
||
|
|
||
|
std::cout << "Done..." << std::endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|