1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-30 03:54:20 +00:00
hpc-2022-g3/OpenMP/linear-algebra/solvers/ludcmp/ludcmp.c

142 lines
3.5 KiB
C
Raw Normal View History

2022-11-11 12:23:45 +00:00
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
/* Include polybench common header. */
#include <polybench.h>
/* Include benchmark-specific header. */
/* Default data type is double, default size is 1024. */
#include "ludcmp.h"
/* Array initialization. */
static void init_array(int n,
DATA_TYPE POLYBENCH_2D(A, N + 1, N + 1, n + 1, n + 1),
DATA_TYPE POLYBENCH_1D(b, N + 1, n + 1),
DATA_TYPE POLYBENCH_1D(x, N + 1, n + 1),
DATA_TYPE POLYBENCH_1D(y, N + 1, n + 1))
{
int i, j;
for (i = 0; i <= n; i++)
{
x[i] = i + 1;
y[i] = (i + 1) / n / 2.0 + 1;
b[i] = (i + 1) / n / 2.0 + 42;
for (j = 0; j <= n; j++)
{
A[i][j] = ((DATA_TYPE)(i + 1) * (j + 1)) / n;
}
}
}
/* DCE code. Must scan the entire live-out data.
Can be used also to check the correctness of the output. */
static void print_array(int n,
DATA_TYPE POLYBENCH_1D(x, N + 1, n + 1))
{
int i;
for (i = 0; i <= n; i++)
{
fprintf(stderr, DATA_PRINTF_MODIFIER, x[i]);
if (i % 20 == 0)
fprintf(stderr, "\n");
}
}
/* Main computational kernel. The whole function will be timed,
including the call and return. */
static void kernel_ludcmp(int n,
DATA_TYPE POLYBENCH_2D(A, N + 1, N + 1, n + 1, n + 1),
DATA_TYPE POLYBENCH_1D(b, N + 1, n + 1),
DATA_TYPE POLYBENCH_1D(x, N + 1, n + 1),
DATA_TYPE POLYBENCH_1D(y, N + 1, n + 1))
{
int i, j, k;
DATA_TYPE w;
b[0] = 1.0;
for (i = 0; i < _PB_N; i++)
{
for (j = i + 1; j <= _PB_N; j++)
{
w = A[j][i];
for (k = 0; k < i; k++)
w = w - A[j][k] * A[k][i];
A[j][i] = w / A[i][i];
}
for (j = i + 1; j <= _PB_N; j++)
{
w = A[i + 1][j];
for (k = 0; k <= i; k++)
w = w - A[i + 1][k] * A[k][j];
A[i + 1][j] = w;
}
}
y[0] = b[0];
for (i = 1; i <= _PB_N; i++)
{
w = b[i];
for (j = 0; j < i; j++)
w = w - A[i][j] * y[j];
y[i] = w;
}
x[_PB_N] = y[_PB_N] / A[_PB_N][_PB_N];
for (i = 0; i <= _PB_N - 1; i++)
{
w = y[_PB_N - 1 - (i)];
for (j = _PB_N - i; j <= _PB_N; j++)
w = w - A[_PB_N - 1 - i][j] * x[j];
x[_PB_N - 1 - i] = w / A[_PB_N - 1 - (i)][_PB_N - 1 - (i)];
}
}
int main(int argc, char **argv)
{
/* Retrieve problem size. */
int n = N;
/* Variable declaration/allocation. */
POLYBENCH_2D_ARRAY_DECL(A, DATA_TYPE, N + 1, N + 1, n + 1, n + 1);
POLYBENCH_1D_ARRAY_DECL(b, DATA_TYPE, N + 1, n + 1);
POLYBENCH_1D_ARRAY_DECL(x, DATA_TYPE, N + 1, n + 1);
POLYBENCH_1D_ARRAY_DECL(y, DATA_TYPE, N + 1, n + 1);
/* Initialize array(s). */
init_array(n,
POLYBENCH_ARRAY(A),
POLYBENCH_ARRAY(b),
POLYBENCH_ARRAY(x),
POLYBENCH_ARRAY(y));
/* Start timer. */
polybench_start_instruments;
/* Run kernel. */
kernel_ludcmp(n,
POLYBENCH_ARRAY(A),
POLYBENCH_ARRAY(b),
POLYBENCH_ARRAY(x),
POLYBENCH_ARRAY(y));
/* Stop and print timer. */
polybench_stop_instruments;
polybench_print_instruments;
/* Prevent dead-code elimination. All live-out data must be printed
by the function call in argument. */
polybench_prevent_dce(print_array(n, POLYBENCH_ARRAY(x)));
/* Be clean. */
POLYBENCH_FREE_ARRAY(A);
POLYBENCH_FREE_ARRAY(b);
POLYBENCH_FREE_ARRAY(x);
POLYBENCH_FREE_ARRAY(y);
return 0;
}