1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-25 17:44:23 +00:00
hpc-2022-g3/openmp/lab3/.solutions/matmul-omp2.c

501 lines
18 KiB
C
Raw Normal View History

2021-04-21 08:16:41 +00:00
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <omp.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#ifndef N
#define N (1 << 10)
#endif
#pragma omp declare target
#define SM 64
#define NTHRDS7 (1 << 0x7) /* 2^{7} */
#define NTHRDS8 (1 << 0x8) /* 2^{8} */
#define NTHRDS9 (1 << 0x9) /* 2^{9} */
#define LTEAMSD (1 << 0xD) /* 2^{13} */
#define LTEAMSE (1 << 0xE) /* 2^{14} */
#define LTEAMSF (1 << 0xF) /* 2^{15} */
#define LTEAMSG (1 << 020) /* 2^{16} */
#define BLKROW (512) /* 4x number of threads in each team */
#define BLKDIM (16)
void gemm_accel_opt2(float *restrict a, float *restrict b, float *restrict c, int n)
{
/*
* - jik-loop
* - 2^7 threads per team and 2^13 teams
* - collapse(3)
* - 4x j-loop unrolling (stride of 1 col )
* - 4x i-loop unrolling (stride of 2^7 rows)
* - 4x k-loop unrolling
* - rb: 4x data re-use
* - ra: 4x data re-use
* - register blocking
*/
#pragma omp target data \
map(to \
: n, a [0:n * n], b [0:n * n]) map(tofrom \
: c [0:n * n])
{
#pragma omp target teams num_teams(LTEAMSD) thread_limit(NTHRDS7) \
map(to \
: n, a [0:n * n], b [0:n * n]) map(tofrom \
: c [0:n * n]) default(none) shared(a, b, c, n)
#pragma omp distribute parallel for num_threads(NTHRDS7) \
dist_schedule(static, NTHRDS7) collapse(3) default(none) shared(a, b, c, n)
for (int j = 0; j < n; j += 4)
{ /* 4x unrolling */
for (int iblk = 0; iblk < n / BLKROW; ++iblk)
{
for (int i = 0; i < NTHRDS7; ++i)
{ /* 4x unrolling */
/* register for c: 4x j-loop * 4x i-loop */
float rc0, rc1, rc2, rc3,
rc4, rc5, rc6, rc7,
rc8, rc9, rca, rcb,
rcc, rcd, rce, rcf;
rc0 = c[j * n + iblk * BLKROW + i];
rc1 = c[j * n + iblk * BLKROW + i + NTHRDS7];
rc2 = c[j * n + iblk * BLKROW + i + NTHRDS7 * 2];
rc3 = c[j * n + iblk * BLKROW + i + NTHRDS7 * 3];
rc4 = c[(j + 1) * n + iblk * BLKROW + i];
rc5 = c[(j + 1) * n + iblk * BLKROW + i + NTHRDS7];
rc6 = c[(j + 1) * n + iblk * BLKROW + i + NTHRDS7 * 2];
rc7 = c[(j + 1) * n + iblk * BLKROW + i + NTHRDS7 * 3];
rc8 = c[(j + 2) * n + iblk * BLKROW + i];
rc9 = c[(j + 2) * n + iblk * BLKROW + i + NTHRDS7];
rca = c[(j + 2) * n + iblk * BLKROW + i + NTHRDS7 * 2];
rcb = c[(j + 2) * n + iblk * BLKROW + i + NTHRDS7 * 3];
rcc = c[(j + 3) * n + iblk * BLKROW + i];
rcd = c[(j + 3) * n + iblk * BLKROW + i + NTHRDS7];
rce = c[(j + 3) * n + iblk * BLKROW + i + NTHRDS7 * 2];
rcf = c[(j + 3) * n + iblk * BLKROW + i + NTHRDS7 * 3];
for (int k = 0; k < n; k += 4)
{ /* 4x unrolling */
/* register for b: 4x j-loop * 4x k-loop */
float rb0, rb1, rb2, rb3,
rb4, rb5, rb6, rb7,
rb8, rb9, rba, rbb,
rbc, rbd, rbe, rbf;
rb0 = b[j * n + k];
rb1 = b[j * n + k + 1];
rb2 = b[j * n + k + 2];
rb3 = b[j * n + k + 3];
rb4 = b[(j + 1) * n + k];
rb5 = b[(j + 1) * n + k + 1];
rb6 = b[(j + 1) * n + k + 2];
rb7 = b[(j + 1) * n + k + 3];
rb8 = b[(j + 2) * n + k];
rb9 = b[(j + 2) * n + k + 1];
rba = b[(j + 2) * n + k + 2];
rbb = b[(j + 2) * n + k + 3];
rbc = b[(j + 3) * n + k];
rbd = b[(j + 3) * n + k + 1];
rbe = b[(j + 3) * n + k + 2];
rbf = b[(j + 3) * n + k + 3];
/* register for a: 4x i-loop * 4x k-loop */
float ra0, ra1, ra2, ra3,
ra4, ra5, ra6, ra7,
ra8, ra9, raa, rab,
rac, rad, rae, raf;
ra0 = a[k * n + iblk * BLKROW + i];
ra1 = a[k * n + iblk * BLKROW + i + NTHRDS7];
ra2 = a[k * n + iblk * BLKROW + i + NTHRDS7 * 2];
ra3 = a[k * n + iblk * BLKROW + i + NTHRDS7 * 3];
ra4 = a[(k + 1) * n + iblk * BLKROW + i];
ra5 = a[(k + 1) * n + iblk * BLKROW + i + NTHRDS7];
ra6 = a[(k + 1) * n + iblk * BLKROW + i + NTHRDS7 * 2];
ra7 = a[(k + 1) * n + iblk * BLKROW + i + NTHRDS7 * 3];
ra8 = a[(k + 2) * n + iblk * BLKROW + i];
ra9 = a[(k + 2) * n + iblk * BLKROW + i + NTHRDS7];
raa = a[(k + 2) * n + iblk * BLKROW + i + NTHRDS7 * 2];
rab = a[(k + 2) * n + iblk * BLKROW + i + NTHRDS7 * 3];
rac = a[(k + 3) * n + iblk * BLKROW + i];
rad = a[(k + 3) * n + iblk * BLKROW + i + NTHRDS7];
rae = a[(k + 3) * n + iblk * BLKROW + i + NTHRDS7 * 2];
raf = a[(k + 3) * n + iblk * BLKROW + i + NTHRDS7 * 3];
/*
* register blocking
*/
// col 1 of c:
rc0 += ra0 * rb0;
rc0 += ra4 * rb1;
rc0 += ra8 * rb2;
rc0 += rac * rb3;
rc1 += ra1 * rb0;
rc1 += ra5 * rb1;
rc1 += ra9 * rb2;
rc1 += rad * rb3;
rc2 += ra2 * rb0;
rc2 += ra6 * rb1;
rc2 += raa * rb2;
rc2 += rae * rb3;
rc3 += ra3 * rb0;
rc3 += ra7 * rb1;
rc3 += rab * rb2;
rc3 += raf * rb3;
// col 2 of c:
rc4 += ra0 * rb4;
rc4 += ra4 * rb5;
rc4 += ra8 * rb6;
rc4 += rac * rb7;
rc5 += ra1 * rb4;
rc5 += ra5 * rb5;
rc5 += ra9 * rb6;
rc5 += rad * rb7;
rc6 += ra2 * rb4;
rc6 += ra6 * rb5;
rc6 += raa * rb6;
rc6 += rae * rb7;
rc7 += ra3 * rb4;
rc7 += ra7 * rb5;
rc7 += rab * rb6;
rc7 += raf * rb7;
// col 3 of c:
rc8 += ra0 * rb8;
rc8 += ra4 * rb9;
rc8 += ra8 * rba;
rc8 += rac * rbb;
rc9 += ra1 * rb8;
rc9 += ra5 * rb9;
rc9 += ra9 * rba;
rc9 += rad * rbb;
rca += ra2 * rb8;
rca += ra6 * rb9;
rca += raa * rba;
rca += rae * rbb;
rcb += ra3 * rb8;
rcb += ra7 * rb9;
rcb += rab * rba;
rcb += raf * rbb;
// col 4 of c:
rcc += ra0 * rbc;
rcc += ra4 * rbd;
rcc += ra8 * rbe;
rcc += rac * rbf;
rcd += ra1 * rbc;
rcd += ra5 * rbd;
rcd += ra9 * rbe;
rcd += rad * rbf;
rce += ra2 * rbc;
rce += ra6 * rbd;
rce += raa * rbe;
rce += rae * rbf;
rcf += ra3 * rbc;
rcf += ra7 * rbd;
rcf += rab * rbe;
rcf += raf * rbf;
}
c[j * n + iblk * BLKROW + i] = rc0;
c[j * n + iblk * BLKROW + i + NTHRDS7] = rc1;
c[j * n + iblk * BLKROW + i + NTHRDS7 * 2] = rc2;
c[j * n + iblk * BLKROW + i + NTHRDS7 * 3] = rc3;
c[(j + 1) * n + iblk * BLKROW + i] = rc4;
c[(j + 1) * n + iblk * BLKROW + i + NTHRDS7] = rc5;
c[(j + 1) * n + iblk * BLKROW + i + NTHRDS7 * 2] = rc6;
c[(j + 1) * n + iblk * BLKROW + i + NTHRDS7 * 3] = rc7;
c[(j + 2) * n + iblk * BLKROW + i] = rc8;
c[(j + 2) * n + iblk * BLKROW + i + NTHRDS7] = rc9;
c[(j + 2) * n + iblk * BLKROW + i + NTHRDS7 * 2] = rca;
c[(j + 2) * n + iblk * BLKROW + i + NTHRDS7 * 3] = rcb;
c[(j + 3) * n + iblk * BLKROW + i] = rcc;
c[(j + 3) * n + iblk * BLKROW + i + NTHRDS7] = rcd;
c[(j + 3) * n + iblk * BLKROW + i + NTHRDS7 * 2] = rce;
c[(j + 3) * n + iblk * BLKROW + i + NTHRDS7 * 3] = rcf;
} /* end i-loop */
} /* end iblk-loop */
} /* end j-loop */
}
}
void gemm_cublas(float *restrict a, float *restrict b, float *restrict c, int n)
{
cublasHandle_t handle;
float alfa = 1.0f,
beta = 1.0f,
*a_dev = NULL,
*b_dev = NULL,
*c_dev = NULL;
/*
* cublasSgemm in CUBLAS
*/
if (CUBLAS_STATUS_SUCCESS != cublasCreate(&handle))
{
printf("error: initialization (CUBLAS)\n");
cublasDestroy(handle);
exit(EXIT_FAILURE);
}
if (cudaSuccess != cudaMalloc((void **)&a_dev, sizeof(*a) * n * n) ||
cudaSuccess != cudaMalloc((void **)&b_dev, sizeof(*b) * n * n) ||
cudaSuccess != cudaMalloc((void **)&c_dev, sizeof(*c) * n * n))
{
printf("error: memory allocation (CUDA)\n");
cudaFree(a_dev);
cudaFree(b_dev);
cudaFree(c_dev);
cublasDestroy(handle);
exit(EXIT_FAILURE);
}
if (CUBLAS_STATUS_SUCCESS != cublasSetMatrix(n, n, sizeof(*a), a, n, a_dev, n) ||
CUBLAS_STATUS_SUCCESS != cublasSetMatrix(n, n, sizeof(*b), b, n, b_dev, n) ||
CUBLAS_STATUS_SUCCESS != cublasSetMatrix(n, n, sizeof(*c), c, n, c_dev, n))
{
printf("error: host --> accl (CUBLAS)\n");
cudaFree(a_dev);
cudaFree(b_dev);
cudaFree(c_dev);
cublasDestroy(handle);
exit(EXIT_FAILURE);
}
if (CUBLAS_STATUS_SUCCESS != cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N,
n, n, n, &alfa, a_dev, n, b_dev, n, &beta, c_dev, n))
{
printf("error: cublasSgemm (CUBLAS)\n");
cudaFree(a_dev);
cudaFree(b_dev);
cudaFree(c_dev);
cublasDestroy(handle);
exit(EXIT_FAILURE);
}
if (cudaSuccess != cudaDeviceSynchronize())
{
printf("error: device synchronization (CUDA)\n");
cudaFree(a_dev);
cudaFree(b_dev);
cudaFree(c_dev);
cublasDestroy(handle);
exit(EXIT_FAILURE);
}
if (CUBLAS_STATUS_SUCCESS != cublasGetMatrix(n, n, sizeof(*c), c_dev, n, c, n))
{
printf("error: accl --> host (CUBLAS)\n");
cudaFree(a_dev);
cudaFree(b_dev);
cudaFree(c_dev);
cublasDestroy(handle);
exit(EXIT_FAILURE);
}
cudaFree(a_dev);
cudaFree(b_dev);
cudaFree(c_dev);
cublasDestroy(handle);
}
static void reorder2(float *restrict a, float *restrict b, int n)
{
for (int i = 0; i < SM; i++)
for (int j = 0; j < SM; j++)
b[i * SM + j] = a[i * n + j];
}
static void kernel(float *restrict a, float *restrict b, float *restrict c, int n)
{
for (int i = 0; i < SM; i++)
{
for (int k = 0; k < SM; k++)
{
for (int j = 0; j < SM; j++)
{
c[i * n + j] += a[i * n + k] * b[k * SM + j];
}
}
}
}
void gemm_accel_opt(float *restrict a, float *restrict b, float *restrict c, int n)
{
#pragma omp target teams distribute parallel for collapse(3) map(to \
: n, a [0:n * n], b [0:n * n]) map(from \
: c [0:n * n]) schedule(static, 1)
for (int i = 0; i < n / SM; i++)
{
for (int j = 0; j < n / SM; j++)
{
for (int k = 0; k < n / SM; k++)
{
float b2[SM * SM];
reorder2(&b[SM * (k * n + j)], b2, n);
kernel(&a[SM * (i * n + k)], b2, &c[SM * (i * n + j)], n);
}
}
}
}
#pragma omp end declare target
void gemm_opt(float *restrict a, float *restrict b, float *restrict c, int n)
{
int bk = n / SM;
#pragma omp parallel
{
float b2[SM * SM];
#pragma omp for collapse(3)
for (int i = 0; i < bk; i++)
{
for (int j = 0; j < bk; j++)
{
for (int k = 0; k < bk; k++)
{
reorder2(&b[SM * (k * n + j)], b2, n);
kernel(&a[SM * (i * n + k)], b2, &c[SM * (i * n + j)], n);
}
}
}
}
}
void gemm(float *restrict a, float *restrict b, float *restrict c, int n)
{
int i, j, k;
#pragma omp parallel for simd collapse(2) schedule(simd \
: static)
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
float sum = 0.0;
for (int k = 0; k < n; ++k)
{
sum += a[i + k * n] * b[k + j * n];
}
c[i * n + j] += sum;
}
}
}
int main(int argc, char *argv[])
{
int i, n = N,
iret = 0;
float *a, *b, *c, *g;
struct timespec rt[2];
double wt; // walltime
if (argc > 1)
n = atoi(argv[1]);
/*
* 0. prepare x, y, and z
*
* y := a * x + y (on host)
* z := a * x + z (on accel)
*/
if (NULL == (a = (float *)malloc(sizeof(*a) * n * n)))
{
printf("error: memory allocation for 'x'\n");
iret = -1;
}
if (NULL == (b = (float *)malloc(sizeof(*b) * n * n)))
{
printf("error: memory allocation for 'y'\n");
iret = -1;
}
if (NULL == (c = (float *)malloc(sizeof(*c) * n * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (NULL == (g = (float *)malloc(sizeof(*g) * n * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (0 != iret)
{
free(a);
free(b);
free(c);
free(g);
exit(EXIT_FAILURE);
}
if (n <= 1024)
{
clock_gettime(CLOCK_REALTIME, rt + 0);
gemm(a, b, c, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("gemm on host : %9.3f sec %9.1f MFLOPS\n", wt, 2.0 * n * n * n / (1.0e6 * wt));
}
if (n <= 4096)
{
clock_gettime(CLOCK_REALTIME, rt + 0);
gemm_opt(a, b, c, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("gemm_opt on host : %9.3f sec %9.1f MFLOPS\n", wt, 2.0 * n * n * n / (1.0e6 * wt));
}
#if 0
#pragma omp target teams distribute parallel for map(to \
: a [0:n * n], b [0:n * n]) map(from \
: c [0:n * n]) collapse(2)
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j){
float sum = 0.0;
for(int k = 0; k < n; ++k){
sum += a[i+k*n]*b[k+j*n];
}
c[i*n+j] += sum;
}
}
#endif
if (n <= 4096)
{
clock_gettime(CLOCK_REALTIME, rt + 0);
gemm_accel_opt(a, b, c, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM-opt1 on accel: %9.3f sec %9.1f MFLOPS\n", wt, 2.0 * n * n * n / (1.0e6 * wt));
for (i = 0; i < n; i++)
{
iret = *(int *)(g + i) ^ *(int *)(c + i);
assert(iret == 0);
}
}
clock_gettime(CLOCK_REALTIME, rt + 0);
gemm_accel_opt2(a, b, c, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM-opt2 on accel: %9.3f sec %9.1f MFLOPS\n", wt, 2.0 * n * n * n / (1.0e6 * wt));
if (n <= 4096)
for (i = 0; i < n; i++)
{
iret = *(int *)(g + i) ^ *(int *)(c + i);
assert(iret == 0);
}
clock_gettime(CLOCK_REALTIME, rt + 0);
gemm_cublas(a, b, c, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("CUBLAS on accel: %9.3f sec %9.1f MFLOPS\n", wt, 2.0 * n * n * n / (1.0e6 * wt));
if (n <= 4096)
for (i = 0; i < n; i++)
{
iret = *(int *)(g + i) ^ *(int *)(c + i);
assert(iret == 0);
}
free(a);
free(b);
free(c);
free(g);
return 0;
}