mirror of
https://github.com/Steffo99/unimore-hpc-assignments.git
synced 2024-11-29 11:34:21 +00:00
356 lines
12 KiB
Text
356 lines
12 KiB
Text
|
/*
|
||
|
* BSD 2-Clause License
|
||
|
*
|
||
|
* Copyright (c) 2020, Alessandro Capotondi
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright notice, this
|
||
|
* list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @file exercise2.cu
|
||
|
* @author Alessandro Capotondi
|
||
|
* @date 5 May 2020
|
||
|
* @brief Exercise 3 - CUDA MATMUL Optimized
|
||
|
*
|
||
|
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
|
||
|
*/
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <time.h>
|
||
|
|
||
|
#define gpuErrchk(ans) \
|
||
|
{ \
|
||
|
gpuAssert((ans), __FILE__, __LINE__); \
|
||
|
}
|
||
|
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
|
||
|
{
|
||
|
if (code != cudaSuccess)
|
||
|
{
|
||
|
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
|
||
|
if (abort)
|
||
|
exit(code);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
extern "C"
|
||
|
{
|
||
|
#include "utils.h"
|
||
|
}
|
||
|
|
||
|
#define TWO02 (1 << 2)
|
||
|
#define TWO04 (1 << 4)
|
||
|
#define TWO08 (1 << 8)
|
||
|
|
||
|
#ifndef N
|
||
|
#define N (1 << 10)
|
||
|
#endif
|
||
|
#ifndef TILE_W
|
||
|
#define TILE_W 128
|
||
|
#endif
|
||
|
#ifndef BLOCK_SIZE
|
||
|
#define BLOCK_SIZE 32
|
||
|
#endif
|
||
|
|
||
|
void gemm(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
|
||
|
{
|
||
|
|
||
|
#pragma omp parallel for collapse(2)
|
||
|
for (int i = 0; i < n; ++i)
|
||
|
{
|
||
|
for (int j = 0; j < n; ++j)
|
||
|
{
|
||
|
float sum = 0.0;
|
||
|
for (int k = 0; k < n; ++k)
|
||
|
{
|
||
|
sum += a[i * n + k] * b[k * n + j];
|
||
|
}
|
||
|
c[i * n + j] = sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__global__ void gemm_v1(float * __restrict__ a, float * __restrict__ b, float * __restrict__ c, int n)
|
||
|
{
|
||
|
int row = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
int col = threadIdx.y + blockIdx.y * blockDim.y;
|
||
|
|
||
|
float sum = 0.0;
|
||
|
for (int k = 0; k < n; ++k)
|
||
|
{
|
||
|
sum += a[row * n + k] * b[k * n + col];
|
||
|
}
|
||
|
c[row * n + col] = sum;
|
||
|
}
|
||
|
|
||
|
__device__ int get_offset(int idx_i, int idx_j, int n)
|
||
|
{
|
||
|
return idx_i * n * BLOCK_SIZE + idx_j * BLOCK_SIZE;
|
||
|
}
|
||
|
|
||
|
__global__ void gemm_v2(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
|
||
|
{
|
||
|
//TODO Shared memory used to store Asub and Bsub respectively
|
||
|
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
|
||
|
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
|
||
|
|
||
|
//TODO Block row and column
|
||
|
int ib = blockIdx.y;
|
||
|
int jb = blockIdx.x;
|
||
|
|
||
|
//TODO Thread row and column within Csub
|
||
|
int it = threadIdx.y;
|
||
|
int jt = threadIdx.x;
|
||
|
|
||
|
int a_offset, b_offset, c_offset;
|
||
|
|
||
|
//TODO Each thread computes one element of Csub
|
||
|
// by accumulating results into Cvalue
|
||
|
float Cvalue = 0.0f;
|
||
|
|
||
|
//TODO Loop over all the sub-matrices of A and B that are
|
||
|
// required to compute Csub.
|
||
|
// Multiply each pair of sub-matrices together
|
||
|
// and accumulate the results.
|
||
|
for (int kb = 0; kb < (n / BLOCK_SIZE); ++kb)
|
||
|
{
|
||
|
//TODO Get the starting address (a_offset) of Asub
|
||
|
// (sub-matrix of A of dimension BLOCK_SIZE x BLOCK_SIZE)
|
||
|
// Asub is located i_block sub-matrices to the right and
|
||
|
// k_block sub-matrices down from the upper-left corner of A
|
||
|
a_offset = get_offset(ib, kb, n);
|
||
|
//TODO Get the starting address (b_offset) of Bsub
|
||
|
b_offset = get_offset(kb, jb, n);
|
||
|
|
||
|
//TODO Load Asub and Bsub from device memory to shared memory
|
||
|
// Each thread loads one element of each sub-matrix
|
||
|
As[it][jt] = a[a_offset + it * n + jt];
|
||
|
Bs[it][jt] = b[b_offset + it * n + jt];
|
||
|
|
||
|
//TODO Synchronize to make sure the sub-matrices are loaded
|
||
|
// before starting the computation
|
||
|
__syncthreads();
|
||
|
|
||
|
//TODO Multiply As and Bs together
|
||
|
for (int k = 0; k < BLOCK_SIZE; ++k)
|
||
|
{
|
||
|
Cvalue += As[it][k] * Bs[k][jt];
|
||
|
}
|
||
|
//TODO Synchronize to make sure that the preceding
|
||
|
// computation is done before loading two new
|
||
|
// sub-matrices of A and B in the next iteration
|
||
|
__syncthreads();
|
||
|
}
|
||
|
|
||
|
c_offset = get_offset(ib, jb, n);
|
||
|
//TODO Each thread block computes one sub-matrix Csub of C
|
||
|
c[c_offset + it * n + jt] = Cvalue;
|
||
|
}
|
||
|
|
||
|
__global__ void gemm_v3(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
|
||
|
{
|
||
|
//TODO Shared memory used to store Asub and Bsub respectively
|
||
|
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
|
||
|
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
|
||
|
|
||
|
//TODO Block row and column
|
||
|
int ib = blockIdx.y;
|
||
|
int jb = blockIdx.x;
|
||
|
|
||
|
//TODO Thread row and column within Csub
|
||
|
int it = threadIdx.y;
|
||
|
int jt = threadIdx.x;
|
||
|
|
||
|
int a_offset, b_offset, c_offset;
|
||
|
|
||
|
//TODO Each thread computes one element of Csub
|
||
|
// by accumulating results into Cvalue
|
||
|
float Cvalue = 0.0f;
|
||
|
|
||
|
//TODO Loop over all the sub-matrices of A and B that are
|
||
|
// required to compute Csub.
|
||
|
// Multiply each pair of sub-matrices together
|
||
|
// and accumulate the results.
|
||
|
for (int kb = 0; kb < (n / BLOCK_SIZE); ++kb)
|
||
|
{
|
||
|
//TODO Get the starting address (a_offset) of Asub
|
||
|
// (sub-matrix of A of dimension BLOCK_SIZE x BLOCK_SIZE)
|
||
|
// Asub is located i_block sub-matrices to the right and
|
||
|
// k_block sub-matrices down from the upper-left corner of A
|
||
|
a_offset = get_offset(ib, kb, n);
|
||
|
//TODO Get the starting address (b_offset) of Bsub
|
||
|
b_offset = get_offset(ib, kb, n);
|
||
|
|
||
|
//TODO Load Asub and Bsub from device memory to shared memory
|
||
|
// Each thread loads one element of each sub-matrix
|
||
|
As[it][jt] = a[a_offset + it * n + jt];
|
||
|
Bs[it][jt] = b[b_offset + it * n + jt];
|
||
|
|
||
|
//TODO Synchronize to make sure the sub-matrices are loaded
|
||
|
// before starting the computation
|
||
|
__syncthreads();
|
||
|
|
||
|
//TODO Multiply As and Bs together
|
||
|
for (int k = 0; k < BLOCK_SIZE; ++k)
|
||
|
{
|
||
|
Cvalue += As[it][k] * Bs[k][jt];
|
||
|
}
|
||
|
//TODO Synchronize to make sure that the preceding
|
||
|
// computation is done before loading two new
|
||
|
// sub-matrices of A and B in the next iteration
|
||
|
__syncthreads();
|
||
|
}
|
||
|
|
||
|
c_offset = get_offset(ib, jb, n);
|
||
|
//TODO Each thread block computes one sub-matrix Csub of C
|
||
|
c[c_offset + it * n + jt] = Cvalue;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
int n = N, iret = 0;
|
||
|
float *a, *b, *c, *g;
|
||
|
struct timespec rt[2];
|
||
|
double wt; // walltime
|
||
|
|
||
|
if (argc > 1)
|
||
|
n = atoi(argv[1]);
|
||
|
|
||
|
if (NULL == (a = (float *)malloc(sizeof(*a) * n * n)))
|
||
|
{
|
||
|
printf("error: memory allocation for 'x'\n");
|
||
|
iret = -1;
|
||
|
}
|
||
|
if (NULL == (b = (float *)malloc(sizeof(*b) * n * n)))
|
||
|
{
|
||
|
printf("error: memory allocation for 'y'\n");
|
||
|
iret = -1;
|
||
|
}
|
||
|
if (NULL == (c = (float *)malloc(sizeof(*c) * n * n)))
|
||
|
{
|
||
|
printf("error: memory allocation for 'z'\n");
|
||
|
iret = -1;
|
||
|
}
|
||
|
if (NULL == (g = (float *)malloc(sizeof(*g) * n * n)))
|
||
|
{
|
||
|
printf("error: memory allocation for 'z'\n");
|
||
|
iret = -1;
|
||
|
}
|
||
|
|
||
|
if (0 != iret)
|
||
|
{
|
||
|
free(a);
|
||
|
free(b);
|
||
|
free(c);
|
||
|
free(g);
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
|
||
|
//Init Data
|
||
|
int _b = rand() % TWO04;
|
||
|
int _c = rand() % TWO08;
|
||
|
#pragma omp parallel for
|
||
|
for (int i = 0; i < n * n; i++)
|
||
|
{
|
||
|
a[i] = _b / (float)TWO02;
|
||
|
b[i] = _c / (float)TWO04;
|
||
|
c[i] = g[i] = 0.0;
|
||
|
}
|
||
|
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 0);
|
||
|
gemm(a, b, g, n);
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 1);
|
||
|
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
|
||
|
printf("GEMM (Host) : %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
|
||
|
|
||
|
//CUDA Buffer Allocation
|
||
|
float *d_a, *d_b, *d_c;
|
||
|
gpuErrchk(cudaMalloc((void **)&d_a, sizeof(float) * n * n));
|
||
|
gpuErrchk(cudaMalloc((void **)&d_b, sizeof(float) * n * n));
|
||
|
gpuErrchk(cudaMalloc((void **)&d_c, sizeof(float) * n * n));
|
||
|
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 0);
|
||
|
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
||
|
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
||
|
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
|
||
|
dim3 dimGrid((n + (BLOCK_SIZE)-1) / (BLOCK_SIZE), (n + (BLOCK_SIZE)-1) / (BLOCK_SIZE));
|
||
|
gemm_v1<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, n);
|
||
|
gpuErrchk(cudaPeekAtLastError());
|
||
|
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 1);
|
||
|
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
|
||
|
printf("GEMM-v1 (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
|
||
|
|
||
|
for (int i = 0; i < n * n; i++)
|
||
|
{
|
||
|
iret = *(int *)(g + i) ^ *(int *)(c + i);
|
||
|
assert(iret == 0);
|
||
|
}
|
||
|
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 0);
|
||
|
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
||
|
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
||
|
//dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
|
||
|
//dim3 dimGrid((n + (BLOCK_SIZE)-1) / (BLOCK_SIZE), (n + (BLOCK_SIZE)-1) / (BLOCK_SIZE));
|
||
|
gemm_v2<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, n);
|
||
|
gpuErrchk(cudaPeekAtLastError());
|
||
|
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 1);
|
||
|
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
|
||
|
printf("GEMM-v2 (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
|
||
|
|
||
|
for (int i = 0; i < n * n; i++)
|
||
|
{
|
||
|
iret = *(int *)(g + i) ^ *(int *)(c + i);
|
||
|
assert(iret == 0);
|
||
|
}
|
||
|
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 0);
|
||
|
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
||
|
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
||
|
//dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
|
||
|
//dim3 dimGrid((n + (BLOCK_SIZE)-1) / (BLOCK_SIZE), (n + (BLOCK_SIZE)-1) / (BLOCK_SIZE));
|
||
|
gemm_v3<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, n);
|
||
|
gpuErrchk(cudaPeekAtLastError());
|
||
|
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
|
||
|
clock_gettime(CLOCK_REALTIME, rt + 1);
|
||
|
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
|
||
|
printf("GEMM-v3 (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
|
||
|
|
||
|
for (int i = 0; i < n * n; i++)
|
||
|
{
|
||
|
iret = *(int *)(g + i) ^ *(int *)(c + i);
|
||
|
assert(iret == 0);
|
||
|
}
|
||
|
free(a);
|
||
|
free(b);
|
||
|
free(c);
|
||
|
free(g);
|
||
|
gpuErrchk(cudaFree(d_a));
|
||
|
gpuErrchk(cudaFree(d_b));
|
||
|
gpuErrchk(cudaFree(d_c));
|
||
|
|
||
|
return 0;
|
||
|
}
|