1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-23 08:34:23 +00:00
hpc-2022-g3/OpenMP/apps/kmeans/kmeans_clustering.c

198 lines
8.2 KiB
C
Raw Normal View History

2022-11-11 12:23:45 +00:00
/*****************************************************************************/
/*IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. */
/*By downloading, copying, installing or using the software you agree */
/*to this license. If you do not agree to this license, do not download, */
/*install, copy or use the software. */
/* */
/* */
/*Copyright (c) 2005 Northwestern University */
/*All rights reserved. */
/*Redistribution of the software in source and binary forms, */
/*with or without modification, is permitted provided that the */
/*following conditions are met: */
/* */
/*1 Redistributions of source code must retain the above copyright */
/* notice, this list of conditions and the following disclaimer. */
/* */
/*2 Redistributions in binary form must reproduce the above copyright */
/* notice, this list of conditions and the following disclaimer in the */
/* documentation and/or other materials provided with the distribution.*/
/* */
/*3 Neither the name of Northwestern University nor the names of its */
/* contributors may be used to endorse or promote products derived */
/* from this software without specific prior written permission. */
/* */
/*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS */
/*IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED */
/*TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND */
/*FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL */
/*NORTHWESTERN UNIVERSITY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, */
/*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/*(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR */
/*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
/*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, */
/*STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
/*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/*POSSIBILITY OF SUCH DAMAGE. */
/******************************************************************************/
/*************************************************************************/
/** File: kmeans_clustering.c **/
/** Description: Implementation of regular k-means clustering **/
/** algorithm **/
/** Author: Wei-keng Liao **/
/** ECE Department, Northwestern University **/
/** email: wkliao@ece.northwestern.edu **/
/** **/
/** Edited by: Jay Pisharath **/
/** Northwestern University. **/
/** **/
/** ================================================================ **/
/** **/
/** Edited by: Sang-Ha Lee **/
/** University of Virginia **/
/** **/
/** Description: No longer supports fuzzy c-means clustering; **/
/** only regular k-means clustering. **/
/** Simplified for main functionality: regular k-means **/
/** clustering. **/
/** **/
/*************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include "kmeans.h"
#include <omp.h>
#define RANDOM_MAX 2147483647
#ifndef FLT_MAX
#define FLT_MAX 3.40282347e+38
#endif
extern double wtime(void);
int find_nearest_point(float *pt, /* [nfeatures] */
int nfeatures,
float **pts, /* [npts][nfeatures] */
int npts)
{
int index, i;
float min_dist = FLT_MAX;
/* find the cluster center id with min distance to pt */
for (i = 0; i < npts; i++)
{
float dist;
dist = euclid_dist_2(pt, pts[i], nfeatures); /* no need square root */
if (dist < min_dist)
{
min_dist = dist;
index = i;
}
}
return (index);
}
/*----< euclid_dist_2() >----------------------------------------------------*/
/* multi-dimensional spatial Euclid distance square */
__inline float euclid_dist_2(float *pt1,
float *pt2,
int numdims)
{
int i;
float ans = 0.0;
for (i = 0; i < numdims; i++)
ans += (pt1[i] - pt2[i]) * (pt1[i] - pt2[i]);
return (ans);
}
/*----< kmeans_clustering() >---------------------------------------------*/
float **kmeans_clustering(float **feature, /* in: [npoints][nfeatures] */
int nfeatures,
int npoints,
int nclusters,
float threshold,
int *membership) /* out: [npoints] */
{
int i, j, n = 0, index, loop = 0;
int *new_centers_len; /* [nclusters]: no. of points in each cluster */
float delta;
float **clusters; /* out: [nclusters][nfeatures] */
float **new_centers; /* [nclusters][nfeatures] */
/* allocate space for returning variable clusters[] */
clusters = (float **)malloc(nclusters * sizeof(float *));
clusters[0] = (float *)malloc(nclusters * nfeatures * sizeof(float));
for (i = 1; i < nclusters; i++)
clusters[i] = clusters[i - 1] + nfeatures;
/* randomly pick cluster centers */
for (i = 0; i < nclusters; i++)
{
// n = (int)rand() % npoints;
for (j = 0; j < nfeatures; j++)
clusters[i][j] = feature[n][j];
n++;
}
for (i = 0; i < npoints; i++)
membership[i] = -1;
/* need to initialize new_centers_len and new_centers[0] to all 0 */
new_centers_len = (int *)calloc(nclusters, sizeof(int));
new_centers = (float **)malloc(nclusters * sizeof(float *));
new_centers[0] = (float *)calloc(nclusters * nfeatures, sizeof(float));
for (i = 1; i < nclusters; i++)
new_centers[i] = new_centers[i - 1] + nfeatures;
do
{
delta = 0.0;
for (i = 0; i < npoints; i++)
{
/* find the index of nestest cluster centers */
index = find_nearest_point(feature[i], nfeatures, clusters, nclusters);
/* if membership changes, increase delta by 1 */
if (membership[i] != index)
delta += 1.0;
/* assign the membership to object i */
membership[i] = index;
/* update new cluster centers : sum of objects located within */
new_centers_len[index]++;
for (j = 0; j < nfeatures; j++)
new_centers[index][j] += feature[i][j];
}
/* replace old cluster centers with new_centers */
for (i = 0; i < nclusters; i++)
{
for (j = 0; j < nfeatures; j++)
{
if (new_centers_len[i] > 0)
clusters[i][j] = new_centers[i][j] / new_centers_len[i];
new_centers[i][j] = 0.0; /* set back to 0 */
}
new_centers_len[i] = 0; /* set back to 0 */
}
// delta /= npoints;
} while (delta > threshold);
free(new_centers[0]);
free(new_centers);
free(new_centers_len);
return clusters;
}