mirror of
https://github.com/Steffo99/unimore-hpc-assignments.git
synced 2024-11-21 23:54:25 +00:00
Update Lab3
This commit is contained in:
parent
5761b0de1c
commit
b558d22f47
7 changed files with 649 additions and 96 deletions
|
@ -73,6 +73,10 @@ extern "C"
|
|||
#define BLOCK_SIZE (512)
|
||||
#endif
|
||||
|
||||
#ifndef N_STREAMS
|
||||
#define N_STREAMS (16)
|
||||
#endif
|
||||
|
||||
/*
|
||||
*SAXPY (host implementation)
|
||||
* y := a * x + y
|
||||
|
@ -143,32 +147,25 @@ int main(int argc, const char **argv)
|
|||
gpuErrchk(cudaMalloc((void **)&d_y, sizeof(float) * n));
|
||||
|
||||
start_timer();
|
||||
int TILE = n / 8;
|
||||
//TODO Copy the first Tile (i=0)
|
||||
gpuErrchk(cudaMemcpyAsync(&d_x[0], &h_x[0], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
gpuErrchk(cudaMemcpyAsync(&d_y[0], &h_y[0], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
int TILE = n / N_STREAMS;
|
||||
cudaStream_t stream[N_STREAMS];
|
||||
for(int i = 0; i < N_STREAMS; i++)
|
||||
cudaStreamCreate(&stream[i]);
|
||||
|
||||
//TODO Loop over the Tiles
|
||||
for (int i = 0; i < n; i += TILE)
|
||||
{
|
||||
//TODO Wait Tile i
|
||||
cudaDeviceSynchronize();
|
||||
//TODO Copy in Tile i (stream i)
|
||||
gpuErrchk(cudaMemcpyAsync(&d_x[i], &h_x[i], sizeof(float) * TILE, cudaMemcpyHostToDevice, stream[i/TILE]));
|
||||
gpuErrchk(cudaMemcpyAsync(&d_y[i], &h_y[i], sizeof(float) * TILE, cudaMemcpyHostToDevice, stream[i/TILE]));
|
||||
|
||||
//TODO Copy the out tile i-1
|
||||
if(i>0)
|
||||
gpuErrchk(cudaMemcpyAsync(&h_y[i-TILE], &d_y[i-TILE], sizeof(float) * TILE, cudaMemcpyDeviceToHost));
|
||||
//TODO Kernel Tile i (stream i)
|
||||
gpu_saxpy<<<((TILE + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE,0,stream[i/TILE]>>>(&d_y[i], a, &d_x[i], TILE);
|
||||
|
||||
//TODO Launch Kernel over tile i
|
||||
gpu_saxpy<<<((TILE + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE>>>(&d_y[i], a, &d_x[i], TILE);
|
||||
|
||||
//TODO Copy the in tile i+=TILE
|
||||
if(i+TILE < n){
|
||||
gpuErrchk(cudaMemcpyAsync(&d_x[i+TILE], &h_x[i+TILE], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
gpuErrchk(cudaMemcpyAsync(&d_y[i+TILE], &h_y[i+TILE], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
}
|
||||
//TODO Copy out Tile i (stream i)
|
||||
gpuErrchk(cudaMemcpyAsync(&h_y[i], &d_y[i], sizeof(float) * TILE, cudaMemcpyDeviceToHost,stream[i/TILE]));
|
||||
}
|
||||
//TODO Copy out the last tile n-TILE
|
||||
gpuErrchk(cudaMemcpyAsync(&h_y[n-TILE], &d_y[n-TILE], sizeof(float) * TILE, cudaMemcpyDeviceToHost));
|
||||
//TODO Wait last tile
|
||||
//TODO Wait all the streams...
|
||||
cudaDeviceSynchronize();
|
||||
stop_timer();
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
|
@ -184,13 +181,16 @@ int main(int argc, const char **argv)
|
|||
assert(iret == 0);
|
||||
}
|
||||
|
||||
//CUDA Buffer Allocation
|
||||
free(h_x);
|
||||
gpuErrchk(cudaFree(d_x));
|
||||
free(h_y);
|
||||
gpuErrchk(cudaFree(d_y));
|
||||
free(h_z);
|
||||
|
||||
for (int i=0; i<N_STREAMS; ++i)
|
||||
cudaStreamDestroy(stream[i]);
|
||||
|
||||
|
||||
// CUDA exit -- needed to flush printf write buffer
|
||||
cudaDeviceReset();
|
||||
return 0;
|
||||
|
|
|
@ -70,7 +70,7 @@ extern "C"
|
|||
#endif
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE (512)
|
||||
#define BLOCK_SIZE (128)
|
||||
#endif
|
||||
|
||||
#ifndef N_STREAMS
|
||||
|
@ -81,16 +81,17 @@ extern "C"
|
|||
*SAXPY (host implementation)
|
||||
* y := a * x + y
|
||||
*/
|
||||
void host_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
void host_saxpy(float *__restrict__ y, float a, float *__restrict__ x, int n)
|
||||
{
|
||||
#pragma omp parallel for simd schedule(simd: static)
|
||||
#pragma omp parallel for simd schedule(simd \
|
||||
: static)
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gpu_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
__global__ void gpu_saxpy(float *__restrict__ y, float a, float *__restrict__ x, int n)
|
||||
{
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (i < n)
|
||||
|
@ -101,8 +102,8 @@ int main(int argc, const char **argv)
|
|||
{
|
||||
int iret = 0;
|
||||
int n = N;
|
||||
float *h_x, *d_x;
|
||||
float *h_y, *d_y;
|
||||
float *h_x;
|
||||
float *h_y;
|
||||
float *h_z;
|
||||
float a = 101.0f / TWO02,
|
||||
b, c;
|
||||
|
@ -110,16 +111,10 @@ int main(int argc, const char **argv)
|
|||
if (argc > 1)
|
||||
n = atoi(argv[1]);
|
||||
|
||||
if (NULL == (h_x = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'x'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (NULL == (h_y = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'y'\n");
|
||||
iret = -1;
|
||||
}
|
||||
//CUDA Buffer Allocation
|
||||
gpuErrchk(cudaMallocManaged((void **)&h_x, sizeof(float) * n));
|
||||
gpuErrchk(cudaMallocManaged((void **)&h_y, sizeof(float) * n));
|
||||
|
||||
if (NULL == (h_z = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'z'\n");
|
||||
|
@ -127,8 +122,8 @@ int main(int argc, const char **argv)
|
|||
}
|
||||
if (0 != iret)
|
||||
{
|
||||
free(h_x);
|
||||
free(h_y);
|
||||
gpuErrchk(cudaFree(h_x));
|
||||
gpuErrchk(cudaFree(h_y));
|
||||
free(h_z);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
@ -142,54 +137,40 @@ int main(int argc, const char **argv)
|
|||
h_y[i] = h_z[i] = c / (float)TWO04;
|
||||
}
|
||||
|
||||
//CUDA Buffer Allocation
|
||||
gpuErrchk(cudaMalloc((void **)&d_x, sizeof(float) * n));
|
||||
gpuErrchk(cudaMalloc((void **)&d_y, sizeof(float) * n));
|
||||
|
||||
start_timer();
|
||||
int TILE = n / N_STREAMS;
|
||||
cudaStream_t stream[N_STREAMS];
|
||||
for(int i = 0; i < N_STREAMS; i++)
|
||||
cudaStreamCreate(&stream[i]);
|
||||
for (int i = 0; i < N_STREAMS; i++)
|
||||
cudaStreamCreate(&stream[i]);
|
||||
|
||||
//TODO Loop over the Tiles
|
||||
for (int i = 0; i < n; i += TILE)
|
||||
{
|
||||
//TODO Copy in Tile i (stream i)
|
||||
gpuErrchk(cudaMemcpyAsync(&d_x[i], &h_x[i], sizeof(float) * TILE, cudaMemcpyHostToDevice, stream[i/TILE]));
|
||||
gpuErrchk(cudaMemcpyAsync(&d_y[i], &h_y[i], sizeof(float) * TILE, cudaMemcpyHostToDevice, stream[i/TILE]));
|
||||
|
||||
//TODO Kernel Tile i (stream i)
|
||||
gpu_saxpy<<<((TILE + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE,0,stream[i/TILE]>>>(&d_y[i], a, &d_x[i], TILE);
|
||||
|
||||
//TODO Copy out Tile i (stream i)
|
||||
gpuErrchk(cudaMemcpyAsync(&h_y[i], &d_y[i], sizeof(float) * TILE, cudaMemcpyDeviceToHost,stream[i/TILE]));
|
||||
gpu_saxpy<<<((TILE + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE, 0, stream[i / TILE]>>>(&h_y[i], a, &h_x[i], TILE);
|
||||
}
|
||||
//TODO Wait all the streams...
|
||||
cudaDeviceSynchronize();
|
||||
stop_timer();
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float)elapsed_ns()));
|
||||
|
||||
//Check Matematical Consistency
|
||||
start_timer();
|
||||
host_saxpy(h_z, a, h_x, n);
|
||||
stop_timer();
|
||||
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float)elapsed_ns()));
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
iret = *(int *)(h_y + i) ^ *(int *)(h_z + i);
|
||||
assert(iret == 0);
|
||||
}
|
||||
|
||||
free(h_x);
|
||||
gpuErrchk(cudaFree(d_x));
|
||||
free(h_y);
|
||||
gpuErrchk(cudaFree(d_y));
|
||||
gpuErrchk(cudaFree(h_x));
|
||||
gpuErrchk(cudaFree(h_y));
|
||||
free(h_z);
|
||||
|
||||
for (int i=0; i<N_STREAMS; ++i)
|
||||
cudaStreamDestroy(stream[i]);
|
||||
|
||||
for (int i = 0; i < N_STREAMS; ++i)
|
||||
cudaStreamDestroy(stream[i]);
|
||||
|
||||
// CUDA exit -- needed to flush printf write buffer
|
||||
cudaDeviceReset();
|
||||
|
|
|
@ -70,28 +70,23 @@ extern "C"
|
|||
#endif
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE (128)
|
||||
#endif
|
||||
|
||||
#ifndef N_STREAMS
|
||||
#define N_STREAMS (16)
|
||||
#define BLOCK_SIZE (512)
|
||||
#endif
|
||||
|
||||
/*
|
||||
*SAXPY (host implementation)
|
||||
* y := a * x + y
|
||||
*/
|
||||
void host_saxpy(float *__restrict__ y, float a, float *__restrict__ x, int n)
|
||||
void host_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
{
|
||||
#pragma omp parallel for simd schedule(simd \
|
||||
: static)
|
||||
#pragma omp parallel for simd schedule(simd: static)
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gpu_saxpy(float *__restrict__ y, float a, float *__restrict__ x, int n)
|
||||
__global__ void gpu_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
{
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (i < n)
|
||||
|
@ -102,8 +97,8 @@ int main(int argc, const char **argv)
|
|||
{
|
||||
int iret = 0;
|
||||
int n = N;
|
||||
float *h_x;
|
||||
float *h_y;
|
||||
float *h_x, *d_x;
|
||||
float *h_y, *d_y;
|
||||
float *h_z;
|
||||
float a = 101.0f / TWO02,
|
||||
b, c;
|
||||
|
@ -111,10 +106,16 @@ int main(int argc, const char **argv)
|
|||
if (argc > 1)
|
||||
n = atoi(argv[1]);
|
||||
|
||||
//CUDA Buffer Allocation
|
||||
gpuErrchk(cudaMallocManaged((void **)&h_x, sizeof(float) * n));
|
||||
gpuErrchk(cudaMallocManaged((void **)&h_y, sizeof(float) * n));
|
||||
|
||||
if (NULL == (h_x = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'x'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (NULL == (h_y = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'y'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (NULL == (h_z = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'z'\n");
|
||||
|
@ -122,8 +123,8 @@ int main(int argc, const char **argv)
|
|||
}
|
||||
if (0 != iret)
|
||||
{
|
||||
gpuErrchk(cudaFree(h_x));
|
||||
gpuErrchk(cudaFree(h_y));
|
||||
free(h_x);
|
||||
free(h_y);
|
||||
free(h_z);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
@ -137,41 +138,59 @@ int main(int argc, const char **argv)
|
|||
h_y[i] = h_z[i] = c / (float)TWO04;
|
||||
}
|
||||
|
||||
start_timer();
|
||||
int TILE = n / N_STREAMS;
|
||||
cudaStream_t stream[N_STREAMS];
|
||||
for (int i = 0; i < N_STREAMS; i++)
|
||||
cudaStreamCreate(&stream[i]);
|
||||
//CUDA Buffer Allocation
|
||||
gpuErrchk(cudaMalloc((void **)&d_x, sizeof(float) * n));
|
||||
gpuErrchk(cudaMalloc((void **)&d_y, sizeof(float) * n));
|
||||
|
||||
start_timer();
|
||||
int TILE = n / 8;
|
||||
//TODO Copy the first Tile (i=0)
|
||||
gpuErrchk(cudaMemcpyAsync(&d_x[0], &h_x[0], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
gpuErrchk(cudaMemcpyAsync(&d_y[0], &h_y[0], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
//TODO Loop over the Tiles
|
||||
for (int i = 0; i < n; i += TILE)
|
||||
{
|
||||
//TODO Kernel Tile i (stream i)
|
||||
gpu_saxpy<<<((TILE + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE, 0, stream[i / TILE]>>>(&h_y[i], a, &h_x[i], TILE);
|
||||
//TODO Wait Tile i
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
//TODO Copy the out tile i-1
|
||||
if(i>0)
|
||||
gpuErrchk(cudaMemcpyAsync(&h_y[i-TILE], &d_y[i-TILE], sizeof(float) * TILE, cudaMemcpyDeviceToHost));
|
||||
|
||||
//TODO Launch Kernel over tile i
|
||||
gpu_saxpy<<<((TILE + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE>>>(&d_y[i], a, &d_x[i], TILE);
|
||||
|
||||
//TODO Copy the in tile i+=TILE
|
||||
if(i+TILE < n){
|
||||
gpuErrchk(cudaMemcpyAsync(&d_x[i+TILE], &h_x[i+TILE], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
gpuErrchk(cudaMemcpyAsync(&d_y[i+TILE], &h_y[i+TILE], sizeof(float) * TILE, cudaMemcpyHostToDevice));
|
||||
}
|
||||
}
|
||||
//TODO Wait all the streams...
|
||||
//TODO Copy out the last tile n-TILE
|
||||
gpuErrchk(cudaMemcpyAsync(&h_y[n-TILE], &d_y[n-TILE], sizeof(float) * TILE, cudaMemcpyDeviceToHost));
|
||||
//TODO Wait last tile
|
||||
cudaDeviceSynchronize();
|
||||
stop_timer();
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float)elapsed_ns()));
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
|
||||
//Check Matematical Consistency
|
||||
start_timer();
|
||||
host_saxpy(h_z, a, h_x, n);
|
||||
stop_timer();
|
||||
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float)elapsed_ns()));
|
||||
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
iret = *(int *)(h_y + i) ^ *(int *)(h_z + i);
|
||||
assert(iret == 0);
|
||||
}
|
||||
|
||||
gpuErrchk(cudaFree(h_x));
|
||||
gpuErrchk(cudaFree(h_y));
|
||||
//CUDA Buffer Allocation
|
||||
free(h_x);
|
||||
gpuErrchk(cudaFree(d_x));
|
||||
free(h_y);
|
||||
gpuErrchk(cudaFree(d_y));
|
||||
free(h_z);
|
||||
|
||||
for (int i = 0; i < N_STREAMS; ++i)
|
||||
cudaStreamDestroy(stream[i]);
|
||||
|
||||
// CUDA exit -- needed to flush printf write buffer
|
||||
cudaDeviceReset();
|
||||
return 0;
|
||||
|
|
|
@ -12,7 +12,7 @@ NVCC=$(CUDA_HOME)/bin/nvcc
|
|||
CXX=g++
|
||||
|
||||
OPT:=-O2 -g
|
||||
NVOPT:=-Xcompiler -fopenmp -lineinfo -arch=sm_53 --ptxas-options=-v --use_fast_math `pkg-config --cflags --libs opencv4`
|
||||
NVOPT:=-Xcompiler -fopenmp -lineinfo `pkg-config --cflags --libs opencv4`
|
||||
|
||||
CXXFLAGS:=$(OPT) -I. $(EXT_CXXFLAGS)
|
||||
LDFLAGS:=-lm -lcudart $(EXT_LDFLAGS)
|
||||
|
@ -47,7 +47,7 @@ run: $(EXE)
|
|||
./$(EXE)
|
||||
|
||||
profile: $(EXE)
|
||||
sudo LD_LIBRARY_PATH=$(CUDA_HOME)/lib:/usr/ext/lib:${LD_LIBRARY_PATH} LIBRARY_PATH=/usr/ext/lib:${LIBRARY_PATH} nvprof ./$(EXE)
|
||||
sudo LD_LIBRARY_PATH=$(CUDA_HOME)/lib:/usr/ext/lib:${LD_LIBRARY_PATH} LIBRARY_PATH=/usr/ext/lib:${LIBRARY_PATH} nvprof --unified-memory-profiling off ./$(EXE)
|
||||
|
||||
metrics: $(EXE)
|
||||
sudo LD_LIBRARY_PATH=$(CUDA_HOME)/lib:/usr/ext/lib:${LD_LIBRARY_PATH} LIBRARY_PATH=/usr/ext/lib:${LIBRARY_PATH} nvprof --print-gpu-trace --metrics "eligible_warps_per_cycle,achieved_occupancy,sm_efficiency,ipc" ./$(EXE)
|
||||
|
|
192
cuda/lab3/saxpy-v3.cu
Normal file
192
cuda/lab3/saxpy-v3.cu
Normal file
|
@ -0,0 +1,192 @@
|
|||
/*
|
||||
* BSD 2-Clause License
|
||||
*
|
||||
* Copyright (c) 2020, Alessandro Capotondi
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file saxpy.c
|
||||
* @author Alessandro Capotondi
|
||||
* @date 12 May 2020
|
||||
* @brief Saxpy
|
||||
*
|
||||
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#define gpuErrchk(ans) \
|
||||
{ \
|
||||
gpuAssert((ans), __FILE__, __LINE__); \
|
||||
}
|
||||
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
|
||||
{
|
||||
if (code != cudaSuccess)
|
||||
{
|
||||
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
|
||||
if (abort)
|
||||
exit(code);
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#include "utils.h"
|
||||
}
|
||||
|
||||
#define TWO02 (1 << 2)
|
||||
#define TWO04 (1 << 4)
|
||||
#define TWO08 (1 << 8)
|
||||
#ifndef N
|
||||
#define N (1 << 27)
|
||||
#endif
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE (512)
|
||||
#endif
|
||||
|
||||
#ifndef N_STREAMS
|
||||
#define N_STREAMS (16)
|
||||
#endif
|
||||
|
||||
/*
|
||||
*SAXPY (host implementation)
|
||||
* y := a * x + y
|
||||
*/
|
||||
void host_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
{
|
||||
#pragma omp parallel for simd schedule(simd: static)
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gpu_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
{
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (i < n)
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
|
||||
int main(int argc, const char **argv)
|
||||
{
|
||||
int iret = 0;
|
||||
int n = N;
|
||||
float *h_x, *d_x;
|
||||
float *h_y, *d_y;
|
||||
float *h_z;
|
||||
float a = 101.0f / TWO02,
|
||||
b, c;
|
||||
|
||||
if (argc > 1)
|
||||
n = atoi(argv[1]);
|
||||
|
||||
if (NULL == (h_x = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'x'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (NULL == (h_y = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'y'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (NULL == (h_z = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'z'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (0 != iret)
|
||||
{
|
||||
free(h_x);
|
||||
free(h_y);
|
||||
free(h_z);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//Init Data
|
||||
b = rand() % TWO04;
|
||||
c = rand() % TWO08;
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
h_x[i] = b / (float)TWO02;
|
||||
h_y[i] = h_z[i] = c / (float)TWO04;
|
||||
}
|
||||
|
||||
//CUDA Buffer Allocation
|
||||
gpuErrchk(cudaMalloc((void **)&d_x, sizeof(float) * n));
|
||||
gpuErrchk(cudaMalloc((void **)&d_y, sizeof(float) * n));
|
||||
|
||||
start_timer();
|
||||
int TILE = n / N_STREAMS;
|
||||
|
||||
//TODO Create N_STREAMS
|
||||
|
||||
//TODO Loop over the Tiles
|
||||
for (int i = 0; i < n; i += TILE)
|
||||
{
|
||||
//TODO Copy to device Tile i (over stream i)
|
||||
|
||||
//TODO Execute Kernel Tile i (stream i)
|
||||
|
||||
//TODO Copy from device Tile i (stream i)
|
||||
}
|
||||
//TODO Wait all the streams...
|
||||
|
||||
stop_timer();
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
|
||||
//Check Matematical Consistency
|
||||
start_timer();
|
||||
host_saxpy(h_z, a, h_x, n);
|
||||
stop_timer();
|
||||
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
iret = *(int *)(h_y + i) ^ *(int *)(h_z + i);
|
||||
assert(iret == 0);
|
||||
}
|
||||
|
||||
free(h_x);
|
||||
gpuErrchk(cudaFree(d_x));
|
||||
free(h_y);
|
||||
gpuErrchk(cudaFree(d_y));
|
||||
free(h_z);
|
||||
|
||||
for (int i=0; i<N_STREAMS; ++i)
|
||||
cudaStreamDestroy(stream[i]);
|
||||
|
||||
|
||||
// CUDA exit -- needed to flush printf write buffer
|
||||
cudaDeviceReset();
|
||||
return 0;
|
||||
}
|
175
cuda/lab3/saxpy-v4.cu
Normal file
175
cuda/lab3/saxpy-v4.cu
Normal file
|
@ -0,0 +1,175 @@
|
|||
/*
|
||||
* BSD 2-Clause License
|
||||
*
|
||||
* Copyright (c) 2020, Alessandro Capotondi
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file saxpy.c
|
||||
* @author Alessandro Capotondi
|
||||
* @date 12 May 2020
|
||||
* @brief Saxpy
|
||||
*
|
||||
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#define gpuErrchk(ans) \
|
||||
{ \
|
||||
gpuAssert((ans), __FILE__, __LINE__); \
|
||||
}
|
||||
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
|
||||
{
|
||||
if (code != cudaSuccess)
|
||||
{
|
||||
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
|
||||
if (abort)
|
||||
exit(code);
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#include "utils.h"
|
||||
}
|
||||
|
||||
#define TWO02 (1 << 2)
|
||||
#define TWO04 (1 << 4)
|
||||
#define TWO08 (1 << 8)
|
||||
#ifndef N
|
||||
#define N (1 << 27)
|
||||
#endif
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE (128)
|
||||
#endif
|
||||
|
||||
#ifndef N_STREAMS
|
||||
#define N_STREAMS (16)
|
||||
#endif
|
||||
|
||||
/*
|
||||
*SAXPY (host implementation)
|
||||
* y := a * x + y
|
||||
*/
|
||||
void host_saxpy(float *__restrict__ y, float a, float *__restrict__ x, int n)
|
||||
{
|
||||
#pragma omp parallel for simd schedule(simd \
|
||||
: static)
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gpu_saxpy(float *__restrict__ y, float a, float *__restrict__ x, int n)
|
||||
{
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (i < n)
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
|
||||
int main(int argc, const char **argv)
|
||||
{
|
||||
int iret = 0;
|
||||
int n = N;
|
||||
float *h_x;
|
||||
float *h_y;
|
||||
float *h_z;
|
||||
float a = 101.0f / TWO02,
|
||||
b, c;
|
||||
|
||||
if (argc > 1)
|
||||
n = atoi(argv[1]);
|
||||
|
||||
//CUDA Buffer Allocation
|
||||
gpuErrchk(cudaMallocManaged((void **)&h_x, sizeof(float) * n));
|
||||
gpuErrchk(cudaMallocManaged((void **)&h_y, sizeof(float) * n));
|
||||
|
||||
if (NULL == (h_z = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'z'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (0 != iret)
|
||||
{
|
||||
gpuErrchk(cudaFree(h_x));
|
||||
gpuErrchk(cudaFree(h_y));
|
||||
free(h_z);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//Init Data
|
||||
b = rand() % TWO04;
|
||||
c = rand() % TWO08;
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
h_x[i] = b / (float)TWO02;
|
||||
h_y[i] = h_z[i] = c / (float)TWO04;
|
||||
}
|
||||
|
||||
start_timer();
|
||||
int TILE = n / N_STREAMS;
|
||||
|
||||
//TODO Create N_STREAMS
|
||||
|
||||
//TODO Loop over the Tiles
|
||||
for (int i = 0; i < n; i += TILE)
|
||||
{
|
||||
//TODO Execute Kernel Tile i (stream i)
|
||||
}
|
||||
//TODO Wait all the streams...
|
||||
stop_timer();
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float)elapsed_ns()));
|
||||
|
||||
//Check Matematical Consistency
|
||||
start_timer();
|
||||
host_saxpy(h_z, a, h_x, n);
|
||||
stop_timer();
|
||||
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float)elapsed_ns()));
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
iret = *(int *)(h_y + i) ^ *(int *)(h_z + i);
|
||||
assert(iret == 0);
|
||||
}
|
||||
|
||||
gpuErrchk(cudaFree(h_x));
|
||||
gpuErrchk(cudaFree(h_y));
|
||||
free(h_z);
|
||||
|
||||
for (int i = 0; i < N_STREAMS; ++i)
|
||||
cudaStreamDestroy(stream[i]);
|
||||
|
||||
// CUDA exit -- needed to flush printf write buffer
|
||||
cudaDeviceReset();
|
||||
return 0;
|
||||
}
|
186
cuda/lab3/saxpy-v5.cu
Normal file
186
cuda/lab3/saxpy-v5.cu
Normal file
|
@ -0,0 +1,186 @@
|
|||
/*
|
||||
* BSD 2-Clause License
|
||||
*
|
||||
* Copyright (c) 2020, Alessandro Capotondi
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file saxpy.c
|
||||
* @author Alessandro Capotondi
|
||||
* @date 12 May 2020
|
||||
* @brief Saxpy
|
||||
*
|
||||
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#define gpuErrchk(ans) \
|
||||
{ \
|
||||
gpuAssert((ans), __FILE__, __LINE__); \
|
||||
}
|
||||
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
|
||||
{
|
||||
if (code != cudaSuccess)
|
||||
{
|
||||
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
|
||||
if (abort)
|
||||
exit(code);
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#include "utils.h"
|
||||
}
|
||||
|
||||
#define TWO02 (1 << 2)
|
||||
#define TWO04 (1 << 4)
|
||||
#define TWO08 (1 << 8)
|
||||
#ifndef N
|
||||
#define N (1 << 27)
|
||||
#endif
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE (512)
|
||||
#endif
|
||||
|
||||
/*
|
||||
*SAXPY (host implementation)
|
||||
* y := a * x + y
|
||||
*/
|
||||
void host_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
{
|
||||
#pragma omp parallel for simd schedule(simd: static)
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gpu_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
|
||||
{
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (i < n)
|
||||
y[i] = a * x[i] + y[i];
|
||||
}
|
||||
|
||||
int main(int argc, const char **argv)
|
||||
{
|
||||
int iret = 0;
|
||||
int n = N;
|
||||
float *h_x, *d_x;
|
||||
float *h_y, *d_y;
|
||||
float *h_z;
|
||||
float a = 101.0f / TWO02,
|
||||
b, c;
|
||||
|
||||
if (argc > 1)
|
||||
n = atoi(argv[1]);
|
||||
|
||||
if (NULL == (h_x = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'x'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (NULL == (h_y = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'y'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (NULL == (h_z = (float *)malloc(sizeof(float) * n)))
|
||||
{
|
||||
printf("error: memory allocation for 'z'\n");
|
||||
iret = -1;
|
||||
}
|
||||
if (0 != iret)
|
||||
{
|
||||
free(h_x);
|
||||
free(h_y);
|
||||
free(h_z);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//Init Data
|
||||
b = rand() % TWO04;
|
||||
c = rand() % TWO08;
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
h_x[i] = b / (float)TWO02;
|
||||
h_y[i] = h_z[i] = c / (float)TWO04;
|
||||
}
|
||||
|
||||
//CUDA Buffer Allocation
|
||||
gpuErrchk(cudaMalloc((void **)&d_x, sizeof(float) * n));
|
||||
gpuErrchk(cudaMalloc((void **)&d_y, sizeof(float) * n));
|
||||
|
||||
start_timer();
|
||||
int TILE = n / 8;
|
||||
//TODO Copy to device the first input Tile (i=0)
|
||||
|
||||
//TODO Loop over the Tiles
|
||||
for (int i = 0; i < n; i += TILE)
|
||||
{
|
||||
//TODO Wait Tile i
|
||||
|
||||
//TODO Copy from the device the output tile i-1 (if i>0)
|
||||
|
||||
//TODO Launch Kernel over tile i
|
||||
|
||||
//TODO Copy to the device the input tile i+=TILE (if i+TILE < n)
|
||||
}
|
||||
//TODO Copy out the last tile n-TILE
|
||||
//TODO Wait last tile
|
||||
stop_timer();
|
||||
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
|
||||
//Check Matematical Consistency
|
||||
start_timer();
|
||||
host_saxpy(h_z, a, h_x, n);
|
||||
stop_timer();
|
||||
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", elapsed_ns() / 1.0e9, 2 * n / ((float) elapsed_ns()));
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
iret = *(int *)(h_y + i) ^ *(int *)(h_z + i);
|
||||
assert(iret == 0);
|
||||
}
|
||||
|
||||
//CUDA Buffer Allocation
|
||||
free(h_x);
|
||||
gpuErrchk(cudaFree(d_x));
|
||||
free(h_y);
|
||||
gpuErrchk(cudaFree(d_y));
|
||||
free(h_z);
|
||||
|
||||
// CUDA exit -- needed to flush printf write buffer
|
||||
cudaDeviceReset();
|
||||
return 0;
|
||||
}
|
Loading…
Reference in a new issue