1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-22 08:04:25 +00:00

Run format document to indent code using tabs

This commit is contained in:
Steffo 2022-11-28 15:26:10 +01:00
parent f0394d1b3b
commit f4a903371a
Signed by: steffo
GPG key ID: 6965406171929D01

View file

@ -14,111 +14,102 @@
// It is exclusive to the GNU C compiler
// https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html
#ifndef M_PI
#define M_PI 3.141
#define M_PI 3.141
#endif
/* Array initialization. */
static void init_array(int nx, int ny,
DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny),
DATA_TYPE POLYBENCH_1D(x, NY, ny))
static void init_array(int nx, int ny, DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny), DATA_TYPE POLYBENCH_1D(x, NY, ny))
{
int i, j;
int i, j;
/// Initialize the `x` array with PI and its multiples.
for (i = 0; i < ny; i++) {
x[i] = i * M_PI;
}
/// Initialize the `x` array with PI and its multiples.
for (i = 0; i < ny; i++) {
x[i] = i * M_PI;
}
/// Initialize the `A` matrix
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
A[i][j] = ((DATA_TYPE)i * (j + 1)) / nx;
}
}
/// Initialize the `A` matrix
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {
A[i][j] = ((DATA_TYPE)i * (j + 1)) / nx;
}
}
}
/* DCE code. Must scan the entire live-out data.
Can be used also to check the correctness of the output. */
static void print_array(int nx,
DATA_TYPE POLYBENCH_1D(y, NX, nx))
Can be used also to check the correctness of the output. */
static void print_array(int nx, DATA_TYPE POLYBENCH_1D(y, NX, nx))
{
int i;
int i;
/// Print all numbers in the array sequentially.
// Cannot parallelize this: prints have to be sequential to make sense!
for (i = 0; i < nx; i++) {
fprintf(stderr, DATA_PRINTF_MODIFIER, y[i]);
}
fprintf(stderr, "\n");
/// Print all numbers in the array sequentially.
// Cannot parallelize this: prints have to be sequential to make sense!
for (i = 0; i < nx; i++) {
fprintf(stderr, DATA_PRINTF_MODIFIER, y[i]);
}
fprintf(stderr, "\n");
}
/* Main computational kernel. The whole function will be timed,
including the call and return. */
static void kernel_atax(int nx, int ny,
DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny),
DATA_TYPE POLYBENCH_1D(x, NY, ny),
DATA_TYPE POLYBENCH_1D(y, NY, ny))
including the call and return. */
static void kernel_atax(int nx, int ny, DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny), DATA_TYPE POLYBENCH_1D(x, NY, ny), DATA_TYPE POLYBENCH_1D(y, NY, ny))
{
int i, j;
int i, j;
for (i = 0; i < _PB_NY; i++)
y[i] = 0;
/// This computes... something? I guess whatever ATAX is?
// Now this gives a nice speedup, especially with a lot more threads than the count!
// THREAD_COUNT * 4 seems to be the best on my local computer. What's the best for the Jetson Nano?
for (i = 0; i < _PB_NX; i++)
{
/// Every iteration has its own tmp variable
DATA_TYPE tmp = 0;
for (j = 0; j < _PB_NY; j++) {
/// Which gets increased by a bit on every iteration
tmp += A[i][j] * x[j];
}
for (j = 0; j < _PB_NY; j++) {
/// Which is later used for to compute ATAX
y[j] = y[j] + A[i][j] * tmp;
}
}
for (i = 0; i < _PB_NY; i++)
y[i] = 0;
/// This computes... something? I guess whatever ATAX is?
// Now this gives a nice speedup, especially with a lot more threads than the count!
// THREAD_COUNT * 4 seems to be the best on my local computer. What's the best for the Jetson Nano?
for (i = 0; i < _PB_NX; i++)
{
/// Every iteration has its own tmp variable
DATA_TYPE tmp = 0;
for (j = 0; j < _PB_NY; j++) {
/// Which gets increased by a bit on every iteration
tmp += A[i][j] * x[j];
}
for (j = 0; j < _PB_NY; j++) {
/// Which is later used for to compute ATAX
y[j] = y[j] + A[i][j] * tmp;
}
}
}
int main(int argc, char **argv)
{
/* Retrieve problem size. */
int nx = NX;
int ny = NY;
/* Retrieve problem size. */
int nx = NX;
int ny = NY;
/* Variable declaration/allocation. */
POLYBENCH_2D_ARRAY_DECL(A, DATA_TYPE, NX, NY, nx, ny);
POLYBENCH_1D_ARRAY_DECL(x, DATA_TYPE, NY, ny);
POLYBENCH_1D_ARRAY_DECL(y, DATA_TYPE, NY, ny);
/* Start timer. */
polybench_start_instruments;
/* Variable declaration/allocation. */
POLYBENCH_2D_ARRAY_DECL(A, DATA_TYPE, NX, NY, nx, ny);
POLYBENCH_1D_ARRAY_DECL(x, DATA_TYPE, NY, ny);
POLYBENCH_1D_ARRAY_DECL(y, DATA_TYPE, NY, ny);
/* Start timer. */
polybench_start_instruments;
/* Initialize array(s). */
init_array(nx, ny, POLYBENCH_ARRAY(A), POLYBENCH_ARRAY(x));
/* Initialize array(s). */
init_array(nx, ny, POLYBENCH_ARRAY(A), POLYBENCH_ARRAY(x));
/* Run kernel. */
kernel_atax(nx, ny,
POLYBENCH_ARRAY(A),
POLYBENCH_ARRAY(x),
POLYBENCH_ARRAY(y));
/* Run kernel. */
kernel_atax(nx, ny, POLYBENCH_ARRAY(A), POLYBENCH_ARRAY(x), POLYBENCH_ARRAY(y));
/* Stop and print timer. */
polybench_stop_instruments;
polybench_print_instruments;
/* Stop and print timer. */
polybench_stop_instruments;
polybench_print_instruments;
/* Prevent dead-code elimination. All live-out data must be printed
by the function call in argument. */
polybench_prevent_dce(print_array(nx, POLYBENCH_ARRAY(y)));
/* Be clean. */
POLYBENCH_FREE_ARRAY(A);
POLYBENCH_FREE_ARRAY(x);
POLYBENCH_FREE_ARRAY(y);
/* Prevent dead-code elimination. All live-out data must be printed
by the function call in argument. */
polybench_prevent_dce(print_array(nx, POLYBENCH_ARRAY(y)));
/* Be clean. */
POLYBENCH_FREE_ARRAY(A);
POLYBENCH_FREE_ARRAY(x);
POLYBENCH_FREE_ARRAY(y);
return 0;
return 0;
}