1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-25 09:34:23 +00:00

HPC CUDA Lab Appendix

This commit is contained in:
Alessandro Capotondi 2021-05-10 23:04:20 +02:00
parent 9570af5b66
commit f859ef9daf
10 changed files with 818 additions and 0 deletions

View file

@ -18,6 +18,7 @@ The exercises related to OpenMP programming model can be found in the folder `op
- `cuda\lab1`: CUDA Basics - `cuda\lab1`: CUDA Basics
- `cuda\lab2`: CUDA Memory Model - `cuda\lab2`: CUDA Memory Model
- `cuda\lab3`: CUDA Advanced Host Management - `cuda\lab3`: CUDA Advanced Host Management
- `cuda\appendix`: CUDA Nsight Tutorial
### (Optional) ### (Optional)
- `challenge`: Parallelize the code with everything you learned and submit the result before *21 May 2021* - `challenge`: Parallelize the code with everything you learned and submit the result before *21 May 2021*

6
cuda/appendix/.gitignore vendored Normal file
View file

@ -0,0 +1,6 @@
Release/
Debug/
.ptp-sync
.settings
.ptp-sync-folder

View file

@ -0,0 +1,21 @@
# Add Include Dir
/usr/include/opencv4/opencv
/usr/include/opencv4
# Add Libs
opencv_dnn
gomp
opencv_gapi
opencv_highgui
opencv_ml
opencv_objdetect
opencv_photo
opencv_stitching
opencv_video
opencv_calib3d
opencv_features2d
opencv_flann
opencv_videoio
opencv_imgcodecs
opencv_imgproc
opencv_core

246
cuda/appendix/gemm/gemm.cu Normal file
View file

@ -0,0 +1,246 @@
/*
* BSD 2-Clause License
*
* Copyright (c) 2020, Alessandro Capotondi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file gemm.cu
* @author Alessandro Capotondi
* @date 12 May 2020
* @brief GEMM Kernel
*
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define gpuErrchk(ans) \
{ \
gpuAssert((ans), __FILE__, __LINE__); \
}
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort)
exit(code);
}
}
#define TWO02 (1 << 2)
#define TWO04 (1 << 4)
#define TWO08 (1 << 8)
#ifndef N
#define N (1 << 10)
#endif
#ifndef TILE_W
#define TILE_W 128
#endif
#ifndef BLOCK_SIZE
#define BLOCK_SIZE 32
#endif
#define SM 64
static void reorder(float *__restrict__ a, float *__restrict__ b, int n)
{
for (int i = 0; i < SM; i++)
for (int j = 0; j < SM; j++)
b[i * SM + j] = a[i * n + j];
}
static void mm(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
{
for (int i = 0; i < SM; i++)
{
for (int k = 0; k < SM; k++)
{
for (int j = 0; j < SM; j++)
{
c[i * n + j] += a[i * n + k] * b[k * SM + j];
}
}
}
}
void gemm_host(float *a, float *b, float *c, int n)
{
int bk = n / SM;
#pragma omp parallel for collapse(3)
for (int i = 0; i < bk; i++)
{
for (int j = 0; j < bk; j++)
{
for (int k = 0; k < bk; k++)
{
float b2[SM * SM];
reorder(&b[SM * (k * n + j)], b2, n);
mm(&a[SM * (i * n + k)], b2, &c[SM * (i * n + j)], n);
}
}
}
}
__global__ void gemm(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
{
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
int ib = blockIdx.y;
int jb = blockIdx.x;
int it = threadIdx.y;
int jt = threadIdx.x;
int a_offset, b_offset, c_offset;
float Cvalue = 0.0f;
for (int kb = 0; kb < (n / BLOCK_SIZE); ++kb)
{
a_offset = ib * n * BLOCK_SIZE + kb * BLOCK_SIZE;
b_offset = kb * n * BLOCK_SIZE + jb * BLOCK_SIZE;
As[it][jt] = a[a_offset + it * n + jt];
Bs[it][jt] = b[b_offset + it * n + jt];
__syncthreads();
for (int k = 0; k < BLOCK_SIZE; ++k)
Cvalue += As[it][k] * Bs[k][jt];
__syncthreads();
}
c_offset = ib * n * BLOCK_SIZE + jb * BLOCK_SIZE;
c[c_offset + it * n + jt] = Cvalue;
}
int main(int argc, char *argv[])
{
int n = N, iret = 0;
float *a, *b, *c, *g;
struct timespec rt[2];
double wt; // walltime
if (argc > 1)
n = atoi(argv[1]);
//TODO Update malloc to cudaMallocHost or cudaMallocManaged (if necessary)
if (NULL == (a = (float *)malloc(sizeof(*a) * n * n)))
{
printf("error: memory allocation for 'x'\n");
iret = -1;
}
//TODO Update malloc to cudaMallocHost or cudaMallocManaged (if necessary)
if (NULL == (b = (float *)malloc(sizeof(*b) * n * n)))
{
printf("error: memory allocation for 'y'\n");
iret = -1;
}
//TODO Update malloc to cudaMallocHost or cudaMallocManaged (if necessary)
if (NULL == (c = (float *)malloc(sizeof(*c) * n * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (NULL == (g = (float *)malloc(sizeof(*g) * n * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (0 != iret)
{
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(a);
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(b);
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(c);
free(g);
exit(EXIT_FAILURE);
}
//Init Data
int _b = rand() % TWO04;
int _c = rand() % TWO08;
#pragma omp parallel for
for (int i = 0; i < n * n; i++)
{
a[i] = _b / (float)TWO02;
b[i] = _c / (float)TWO04;
c[i] = g[i] = 0.0;
}
clock_gettime(CLOCK_REALTIME, rt + 0);
gemm_host(a, b, g, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM (Host) : %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
//TODO Remove if unecessary
float *d_a, *d_b, *d_c;
gpuErrchk(cudaMalloc((void **)&d_a, sizeof(float) * n * n));
gpuErrchk(cudaMalloc((void **)&d_b, sizeof(float) * n * n));
gpuErrchk(cudaMalloc((void **)&d_c, sizeof(float) * n * n));
clock_gettime(CLOCK_REALTIME, rt + 0);
//TODO Remove if unecessary
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid((n + (BLOCK_SIZE)-1) / (BLOCK_SIZE), (n + (BLOCK_SIZE)-1) / (BLOCK_SIZE));
gemm<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, n);
gpuErrchk(cudaPeekAtLastError());
//TODO Remove if unecessary
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM-v1 (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
for (int i = 0; i < n * n; i++)
{
iret = *(int *)(g + i) ^ *(int *)(c + i);
assert(iret == 0);
}
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(a);
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(b);
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(c);
free(g);
//TODO Remove if unecessary
gpuErrchk(cudaFree(d_a));
//TODO Remove if unecessary
gpuErrchk(cudaFree(d_b));
//TODO Remove if unecessary
gpuErrchk(cudaFree(d_c));
return 0;
}

View file

@ -0,0 +1,183 @@
/*
* BSD 2-Clause License
*
* Copyright (c) 2020, Alessandro Capotondi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file saxpy.c
* @author Alessandro Capotondi
* @date 12 May 2020
* @brief Saxpy
*
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
*/
#include <assert.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <cuda_runtime.h>
#define gpuErrchk(ans) \
{ \
gpuAssert((ans), __FILE__, __LINE__); \
}
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort)
exit(code);
}
}
#define TWO02 (1 << 2)
#define TWO04 (1 << 4)
#define TWO08 (1 << 8)
#ifndef N
#define N (1 << 27)
#endif
#ifndef BLOCK_SIZE
#define BLOCK_SIZE (512)
#endif
/*
*SAXPY (host implementation)
* y := a * x + y
*/
void host_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
{
#pragma omp parallel for simd schedule(simd: static)
for (int i = 0; i < n; i++)
{
y[i] = a * x[i] + y[i];
}
}
__global__ void gpu_saxpy(float * __restrict__ y, float a, float * __restrict__ x, int n)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];
}
int main(int argc, const char **argv)
{
int iret = 0;
int n = N;
float *h_x, *d_x;
float *h_y, *d_y;
float *h_z;
float a = 101.0f / TWO02,
b, c;
struct timespec rt[2];
double wt; // walltime
if (argc > 1)
n = atoi(argv[1]);
//TODO Update malloc to cudaMallocHost or cudaMallocManaged (if necessary)
if (NULL == (h_x = (float *)malloc(sizeof(float) * n)))
{
printf("error: memory allocation for 'x'\n");
iret = -1;
}
//TODO Update malloc to cudaMallocHost or cudaMallocManaged (if necessary)
if (NULL == (h_y = (float *)malloc(sizeof(float) * n)))
{
printf("error: memory allocation for 'y'\n");
iret = -1;
}
if (NULL == (h_z = (float *)malloc(sizeof(float) * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (0 != iret)
{
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(h_x);
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(h_y);
free(h_z);
exit(EXIT_FAILURE);
}
//Init Data
b = rand() % TWO04;
c = rand() % TWO08;
for (int i = 0; i < n; i++)
{
h_x[i] = b / (float)TWO02;
h_y[i] = h_z[i] = c / (float)TWO04;
}
//TODO Remove if unecessary
gpuErrchk(cudaMalloc((void **)&d_x, sizeof(float) * n));
gpuErrchk(cudaMalloc((void **)&d_y, sizeof(float) * n));
clock_gettime(CLOCK_REALTIME, rt + 0);
//TODO Remove if unecessary
gpuErrchk(cudaMemcpy(d_x, h_x, sizeof(float) * n, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_y, h_y, sizeof(float) * n, cudaMemcpyHostToDevice));
gpu_saxpy<<<((n + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE>>>(d_y, a, d_x, n);
gpuErrchk(cudaPeekAtLastError());
//TODO Remove if unecessary
gpuErrchk(cudaMemcpy(h_y, d_y, sizeof(float) * n, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("saxpy (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2 * n / wt);
//Check Matematical Consistency
clock_gettime(CLOCK_REALTIME, rt + 0);
host_saxpy(h_z, a, h_x, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("saxpy (Host): %9.3f sec %9.1f GFLOPS\n", wt, 2 * n / wt);
for (int i = 0; i < n; ++i)
{
iret = *(int *)(h_y + i) ^ *(int *)(h_z + i);
assert(iret == 0);
}
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(h_x);
//TODO Remove if unecessary
gpuErrchk(cudaFree(d_x));
//TODO Update cudaFreeHost or cudaFree (if necessary)
free(h_y);
//TODO Remove if unecessary
gpuErrchk(cudaFree(d_y));
free(h_z);
// CUDA exit -- needed to flush printf write buffer
cudaDeviceReset();
return 0;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 261 KiB

View file

@ -0,0 +1,361 @@
/*
* BSD 2-Clause License
*
* Copyright (c) 2020, Alessandro Capotondi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file sobel.cu
* @author Alessandro Capotondi
* @date 5 May 2020
* @brief Stencil 2d - Sobel
*
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
*/
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs/imgcodecs.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace cv;
using namespace std;
#ifndef BLOCK_SIZE
#define BLOCK_SIZE 32
#endif
#define gpuErrchk(ans) \
{ \
gpuAssert((ans), __FILE__, __LINE__); \
}
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort)
exit(code);
}
}
void sobel_host(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
#pragma omp parallel for simd collapse(2)
for (int y = 1; y < height - 1; y++)
{
for (int x = 1; x < width - 1; x++)
{
int dx = (-1 * orig[(y - 1) * width + (x - 1)]) + (-2 * orig[y * width + (x - 1)]) + (-1 * orig[(y + 1) * width + (x - 1)]) +
(orig[(y - 1) * width + (x + 1)]) + (2 * orig[y * width + (x + 1)]) + (orig[(y + 1) * width + (x + 1)]);
int dy = (orig[(y - 1) * width + (x - 1)]) + (2 * orig[(y - 1) * width + x]) + (orig[(y - 1) * width + (x + 1)]) +
(-1 * orig[(y + 1) * width + (x - 1)]) + (-2 * orig[(y + 1) * width + x]) + (-1 * orig[(y + 1) * width + (x + 1)]);
out[y * width + x] = sqrt((float)((dx * dx) + (dy * dy)));
}
}
}
__global__ void sobel_v1(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
int i = threadIdx.y + blockIdx.y * blockDim.y;
int j = threadIdx.x + blockIdx.x * blockDim.x;
if (j > 0 && i > 0 && j < width - 1 && i < height - 1)
{
int dx = (-1 * orig[(i - 1) * width + (j - 1)]) + (-2 * orig[i * width + (j - 1)]) + (-1 * orig[(i + 1) * width + (j - 1)]) +
(orig[(i - 1) * width + (j + 1)]) + (2 * orig[i * width + (j + 1)]) + (orig[(i + 1) * width + (j + 1)]);
int dy = (orig[(i - 1) * width + (j - 1)]) + (2 * orig[(i - 1) * width + j]) + (orig[(i - 1) * width + (j + 1)]) +
(-1 * orig[(i + 1) * width + (j - 1)]) + (-2 * orig[(i + 1) * width + j]) + (-1 * orig[(i + 1) * width + (j + 1)]);
out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy)));
}
}
__global__ void sobel_v2(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
//TODO Declare i and j: global output indexes
int i = threadIdx.y + blockIdx.y * blockDim.y;
int j = threadIdx.x + blockIdx.x * blockDim.x;
//TODO Declare it and jt: Thread row and column of output matrix
int it = threadIdx.y;
int jt = threadIdx.x;
//TODO Declare shared input patch
__shared__ unsigned char s_in[BLOCK_SIZE][BLOCK_SIZE];
//TODO Load input patch
// Each thread loads one element of the patch
s_in[it][jt] = orig[i * width + j];
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
//TODO if block boundary do
if (jt > 0 && it > 0 && jt < BLOCK_SIZE - 1 && it < BLOCK_SIZE - 1 && j > 0 && i > 0 && j < width - 1 && i < height - 1)
{
int dx = (-1 * s_in[it - 1][jt - 1]) + (-2 * s_in[it][jt - 1]) + (-1 * s_in[it + 1][jt - 1]) +
(s_in[it - 1][jt + 1]) + (2 * s_in[it][jt + 1]) + (s_in[it + 1][jt + 1]);
int dy = (s_in[it - 1][jt - 1]) + (2 * s_in[it - 1][jt]) + (s_in[it - 1][jt + 1]) +
(-1 * s_in[it + 1][jt - 1]) + (-2 * s_in[it + 1][jt]) + (-1 * s_in[it + 1][jt + 1]);
out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy)));
}
else if (j > 0 && i > 0 && j < width - 1 && i < height - 1)
{
//TODO if not-block boundary do (tip check global boundaries)
int dx = (-1 * orig[(i - 1) * width + (j - 1)]) + (-2 * orig[i * width + (j - 1)]) + (-1 * orig[(i + 1) * width + (j - 1)]) +
(orig[(i - 1) * width + (j + 1)]) + (2 * orig[i * width + (j + 1)]) + (orig[(i + 1) * width + (j + 1)]);
int dy = (orig[(i - 1) * width + (j - 1)]) + (2 * orig[(i - 1) * width + j]) + (orig[(i - 1) * width + (j + 1)]) +
(-1 * orig[(i + 1) * width + (j - 1)]) + (-2 * orig[(i + 1) * width + j]) + (-1 * orig[(i + 1) * width + (j + 1)]);
out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy)));
}
}
__global__ void sobel_v3(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
//TODO Declare i and j: global output indexes (tip: use BLOCK_SIZE-2)
int i = threadIdx.y + blockIdx.y * (BLOCK_SIZE - 2);
int j = threadIdx.x + blockIdx.x * (BLOCK_SIZE - 2);
//TODO Declare it and jt: Thread row and column of output matrix
int it = threadIdx.y;
int jt = threadIdx.x;
//TODO Check if i and j are out of memory
if (i >= width && j >= height)
return;
//TODO Declare shared input patch
__shared__ unsigned char s_in[BLOCK_SIZE][BLOCK_SIZE];
//TODO Load input patch
// Each thread loads one element of the patch
s_in[it][jt] = orig[i * width + j];
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
//TODO Update block and bound checks
if (jt > 0 && it > 0 && jt < BLOCK_SIZE - 1 && it < BLOCK_SIZE - 1 && j > 0 && i > 0 && j < width - 1 && i < height - 1)
{
int dx = (-1 * s_in[it - 1][jt - 1]) + (-2 * s_in[it][jt - 1]) + (-1 * s_in[it + 1][jt - 1]) +
(s_in[it - 1][jt + 1]) + (2 * s_in[it][jt + 1]) + (s_in[it + 1][jt + 1]);
int dy = (s_in[it - 1][jt - 1]) + (2 * s_in[it - 1][jt]) + (s_in[it - 1][jt + 1]) +
(-1 * s_in[it + 1][jt - 1]) + (-2 * s_in[it + 1][jt]) + (-1 * s_in[it + 1][jt + 1]);
out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy)));
}
}
__global__ void sobel_v4(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
//TODO Declare i and j: global output indexes (tip: use BLOCK_SIZE)
int i = threadIdx.y + blockIdx.y * blockDim.y;
int j = threadIdx.x + blockIdx.x * blockDim.x;
//TODO Declare it and jt: Thread row and column of output matrix
int it = threadIdx.y;
int jt = threadIdx.x;
//TODO Declare shared input patch (tip: use BLOCK_SIZE+2)
__shared__ unsigned char s_in[BLOCK_SIZE + 32][BLOCK_SIZE + 32];
//TODO Load input patch
// Each thread loads one element of the patch
s_in[it][jt] = orig[i * width + j];
//TODO Check condition and load remaining elements
if ((it + BLOCK_SIZE) < BLOCK_SIZE + 2 && (jt) < BLOCK_SIZE + 2 && (i + BLOCK_SIZE) < width && (j) < height)
s_in[it + BLOCK_SIZE][jt] = orig[(i + BLOCK_SIZE) * width + j];
if ((it) < BLOCK_SIZE + 2 && (jt + BLOCK_SIZE) < BLOCK_SIZE + 2 && (i) < width && (j + BLOCK_SIZE) < height)
s_in[it][jt + BLOCK_SIZE] = orig[i * width + j + BLOCK_SIZE];
if ((it + BLOCK_SIZE) < BLOCK_SIZE + 2 && (jt + BLOCK_SIZE) < BLOCK_SIZE + 2 && (i + BLOCK_SIZE) < width && (j + BLOCK_SIZE) < height)
s_in[it + BLOCK_SIZE][jt + BLOCK_SIZE] = orig[(i + BLOCK_SIZE) * width + j + BLOCK_SIZE];
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
//TODO Update all idx adding y +1 and x +1
if (jt < BLOCK_SIZE && it < BLOCK_SIZE && j < (width - 2) && i < (height - 2))
{
int dx = (-1 * s_in[it - 1 + 1][jt - 1 + 1]) + (-2 * s_in[it + 1][jt - 1 + 1]) + (-1 * s_in[it + 1 + 1][jt - 1 + 1]) +
(s_in[it - 1 + 1][jt + 1 + 1]) + (2 * s_in[it + 1][jt + 1 + 1]) + (s_in[it + 1 + 1][jt + 1 + 1]);
int dy = (s_in[it - 1 + 1][jt - 1 + 1]) + (2 * s_in[it - 1 + 1][jt + 1]) + (s_in[it - 1 + 1][jt + 1 + 1]) +
(-1 * s_in[it + 1 + 1][jt - 1 + 1]) + (-2 * s_in[it + 1 + 1][jt + 1]) + (-1 * s_in[it + 1 + 1][jt + 1 + 1]);
out[(i + 1) * width + j + 1] = sqrt((float)((dx * dx) + (dy * dy)));
}
}
int main(int argc, char *argv[])
{
int iret = 0;
struct timespec rt[2];
double wt; // walltime
string filename("../data/buzz.jpg");
if (argc > 1)
filename = argv[1];
// Load Image
Mat image = imread(filename, IMREAD_GRAYSCALE);
if (!image.data)
{
cout << "Could not open or find the image" << std::endl;
return -1;
}
int width = image.size().width;
int height = image.size().height;
// Create Output Images
Mat out1 = image.clone();
Mat out2 = image.clone();
Mat result = image.clone();
memset(out1.ptr(), 0, sizeof(unsigned char) * width * height);
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
memset(result.ptr(), 0, sizeof(unsigned char) * width * height);
// Compute CPU Version - Golden Model
clock_gettime(CLOCK_REALTIME, rt + 0);
sobel_host(image.ptr(), out1.ptr(), width, height);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel (Host) : %9.6f sec\n", wt);
//CUDA Buffer Allocation
unsigned char *d_image_in;
unsigned char *d_image_out;
gpuErrchk(cudaMalloc((void **)&d_image_in, sizeof(unsigned char) * width * height));
gpuErrchk(cudaMalloc((void **)&d_image_out, sizeof(unsigned char) * width * height));
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice));
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid((width + BLOCK_SIZE - 1) / BLOCK_SIZE, (height + BLOCK_SIZE - 1) / BLOCK_SIZE);
sobel_v1<<<dimGrid, dimBlock>>>(d_image_in, d_image_out, width, height);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v1 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
int percentage = countNonZero(result);
//Reset Output image
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice));
// dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
// dim3 dimGrid((width + BLOCK_SIZE - 1) / BLOCK_SIZE, (height + BLOCK_SIZE - 1) / BLOCK_SIZE);
sobel_v2<<<dimGrid, dimBlock>>>(d_image_in, d_image_out, width, height);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v2 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
percentage = countNonZero(result);
if (percentage)
{
printf("Divergence %d\n", percentage);
imshow("Output GPU", out2);
imshow("error diff", result);
waitKey(0);
}
assert(percentage == 0);
//Reset Output image
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice));
//TODO define dimGrid, dimBlock
//TODO add sobel_v4 call
dim3 dimBlock_v3(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid_v3((width + (BLOCK_SIZE - 2) - 1) / (BLOCK_SIZE - 2), (height + (BLOCK_SIZE - 2) - 1) / (BLOCK_SIZE - 2));
sobel_v3<<<dimGrid_v3, dimBlock_v3>>>(d_image_in, d_image_out, width, height);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v3 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
percentage = countNonZero(result);
if (percentage)
{
printf("Divergence %d\n", percentage);
imshow("Output GPU", out2);
imshow("error diff", result);
waitKey(0);
}
assert(percentage == 0);
//Reset Output image
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice));
//TODO define dimGrid, dimBlock
//TODO add sobel_v4 call
sobel_v4<<<dimGrid, dimBlock>>>(d_image_in, d_image_out, width, height);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v4 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
percentage = countNonZero(result);
if (percentage)
{
printf("Divergence %d\n", percentage);
imshow("Output GPU", out2);
imshow("error diff", result);
waitKey(0);
}
assert(percentage == 0);
gpuErrchk(cudaFree(d_image_out));
gpuErrchk(cudaFree(d_image_in));
return iret;
}