#include #include #include #include #include /* Include polybench common header. */ #include "polybench.hu" /* Include benchmark-specific header. */ /* Default data type is double, default size is 4000. */ #include "atax.hu" // Workaround for the editor not finding M_PI // It is exclusive to the GNU C compiler // https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html #ifndef M_PI #define M_PI 3.141 #endif // Default if CUDA_NTHREADS is not set #ifndef CUDA_NTHREADS #define CUDA_NTHREADS 128 #endif // Enable syntax highlighting for the CUDA mode // TODO: Remove this, as it will be set by .bench.sh #define HPC_USE_CUDA // Enable syntax highlighting for the stride mode // TODO: Remove this, as it will be set by .bench.sh #define HPC_USE_STRIDE // Create macro for debug logging #define debug(txt) std::cerr << txt << std::endl /** * Initialize the arrays to be used in the computation: * * - `X` is filled with multiples of `M_PI`; * - `Y` is zeroed; * - `A` is filled with sample data. * * To be called on the CPU (uses the `__host__` qualifier). */ #ifndef HPC_USE_CUDA __host__ static void init_array(DATA_TYPE** A, DATA_TYPE* X, DATA_TYPE* Y) { /* X = [ 3.14, 6.28, 9.42, ... ] */ for (unsigned int y = 0; y < NY; y++) { X[y] = y * M_PI; } /* Y = [ 0.00, 0.00, 0.00, ... ] */ for (unsigned int x = 0; x < NY; x++) { Y[x] = 0; } /* * A = [ * [ 0, 0, 0, 0, ... ], * [ 1 / NX, 2 / NX, 3 / NX, 4 / NX, ... ], * [ 2 / NX, 4 / NX, 6 / NX, 8 / NX, ... ], * [ 3 / NX, 6 / NX, 9 / NX, 12 / NX, ... ], * ... * ] */ for (unsigned int x = 0; x < NX; x++) { for (unsigned int y = 0; y < NY; y++) { A[x][y] = (DATA_TYPE)(x * (y + 1)) / NX; } } } #endif /** * Initialize the `X` array. * * Runs on the device. */ #ifdef HPC_USE_CUDA __device__ static void init_array_cuda_x(DATA_TYPE* X, unsigned int threads) { // Find how many iterations should be performed by each thread unsigned int perThread = NY / threads; // Find the index of the current thread, even if threads span multiple blocks int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x; // Have each thread perform the previously determined number of iterations for(int stride = 0; stride < perThread; stride++) { // Find the index of the current iteration // This is equal to `y` of the init_array function int iterationIdx = blockThreadIdx * stride; // Prevent the thread from accessing unallocated memory if(iterationIdx < NY) { // Set the array element X[iterationIdx] = iterationIdx * M_PI; } } } #endif /** * Initialize the `Y` array. * * Runs on the device. */ #ifdef HPC_USE_CUDA __device__ static void init_array_cuda_y(DATA_TYPE* Y, unsigned int threads) { // Find how many iterations should be performed by each thread unsigned int perThread = NX / threads; // Find the index of the current thread, even if threads span multiple blocks int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x; // Have each thread perform the previously determined number of iterations for(int stride = 0; stride < perThread; stride++) { // Find the index of the current iteration // This is equal to `y` of the init_array function int iterationIdx = blockThreadIdx * stride; // Prevent the thread from accessing unallocated memory if(iterationIdx < NX) { // Set the array element Y[iterationIdx] = 0; } } } #endif /** * Initialize the `A` array. * * Runs on the device. */ #ifdef HPC_USE_CUDA __device__ static void init_array_cuda_a(DATA_TYPE* A, unsigned int threads) { // Find how many elements should be written in total unsigned int elements = NX * NY; // Find how many iterations should be performed by each thread unsigned int perThread = elements / threads; // Find the index of the current thread, even if threads span multiple blocks int blockThreadIdx = blockIdx.x * blockDim.x + threadIdx.x; /* TODO */ } #endif /** * Initialize the arrays to be used in the computation: * * - `X` is filled with multiples of `M_PI`; * - `Y` is zeroed; * - `A` is filled with sample data. * * Beware that `A` here is a simple array, it is not a matrix, so elements are accessed via [y * NX + x] (I think?). * * It is called by the host, runs on the device, and calls the other init_arrays on the device. */ #ifdef HPC_USE_CUDA __global__ static void init_array_cuda(DATA_TYPE* A, DATA_TYPE* X, DATA_TYPE* Y) { unsigned int threads = gridDim.x * blockDim.x; init_array_cuda_x(X, threads); init_array_cuda_y(Y, threads); init_array_cuda_a(A, threads); } #endif /** * Print the given array. * * Cannot be parallelized, as the elements of the array should be * * To be called on the CPU (uses the `__host__` qualifier). */ __host__ static void print_array(DATA_TYPE* Y) { for (unsigned int x = 0; x < NX; x++) { fprintf(stderr, DATA_PRINTF_MODIFIER, Y[x]); } fprintf(stderr, "\n"); } /** * Compute ATAX : * - A is the input matrix * - X is an input vector * - Y is the result vector * * In particular: * ``` * A * (A * X) = Y * ``` * Wait, there's no transposition here?!? * * Parallelizing this is the goal of the assignment. * * Currently to be called on the CPU (uses the `__host__` qualifier), but we may probably want to change that soon. */ __host__ static void kernel_atax(DATA_TYPE** A, DATA_TYPE* X, DATA_TYPE* Y) { for (unsigned int x = 0; x < NX; x++) { DATA_TYPE tmp = 0; for (unsigned int y = 0; y < NY; y++) { tmp += A[x][y] * X[y]; } for (unsigned int y = 0; y < NY; y++) { Y[y] += A[x][y] * tmp; } } } /** * The main function of the benchmark, which sets up tooling to measure the time spent computing `kernel_atax`. * * We should probably avoid editing this. */ __host__ int main(int argc, char** argv) { debug("Starting main..."); #ifndef HPC_USE_CUDA debug("[Mode] Host-only"); debug("[Pointers] Allocating..."); // A[NX][NY] DATA_TYPE** A = new DATA_TYPE*[NX] {}; for(unsigned int x = 0; x < NX; x++) { A[x] = new DATA_TYPE[NY] {}; } // X[NY] DATA_TYPE* X = new DATA_TYPE[NY] {}; // Y[NX] DATA_TYPE* Y = new DATA_TYPE[NX] {}; debug("[Pointers] Allocated!"); #ifdef HPC_INCLUDE_INIT debug("[Benchmark] Starting..."); polybench_start_instruments; #endif debug("[Init] Initializing..."); init_array(A, X, Y); debug("[Init] Initialized!"); #ifndef HPC_INCLUDE_INIT debug("[Benchmark] Starting..."); polybench_start_instruments; #endif debug("[Kernel] Running..."); kernel_atax(A, X, Y); debug("[Kernel] Completed!"); debug("[Benchmark] Stopping..."); polybench_stop_instruments; polybench_print_instruments; debug("[Benchmark] Complete!"); debug("[Verify] Printing...") polybench_prevent_dce( print_array(Y) ); debug("[Verify] Done!") #else debug("[Mode] Host-and-device, CUDA"); debug("[Pointers] Allocating..."); DATA_TYPE* A; DATA_TYPE* X; DATA_TYPE* Y; debug("[CUDA] Allocating A..."); if(cudaMalloc((void**)&A, sizeof(DATA_TYPE) * NX * NY)) { debug("[CUDA] Could not allocate A!"); return 1; } debug("[CUDA] Allocated A!"); debug("[CUDA] Allocating X..."); if(cudaMalloc((void**)&X, sizeof(DATA_TYPE) * NY)) { debug("[CUDA] Could not allocate X!"); return 1; } debug("[CUDA] Allocated X!"); debug("[CUDA] Allocating Y..."); if(cudaMalloc((void**)&Y, sizeof(DATA_TYPE) * NX)) { debug("[CUDA] Could not allocate Y!"); return 1; } debug("[CUDA] Allocated Y!"); #ifdef POLYBENCH_INCLUDE_INIT debug("[Benchmark] Starting..."); polybench_start_instruments; #endif debug("[Init] Initializing..."); init_array_cuda<<<32, 32>>>((double*) A, (double*) X, (double*) Y); if(cudaGetLastError()) { debug("[Init] Failed to execute kernel!"); return 1; } debug("[Init] Initialized!"); #ifndef POLYBENCH_INCLUDE_INIT debug("[Benchmark] Starting..."); polybench_start_instruments; #endif // kernel_atax_cuda<<<1, 1>>>(); polybench_stop_instruments; polybench_print_instruments; // Y = cudaMemcpy(); /* polybench_prevent_dce( print_array(Y) ); */ #endif return 0; }