#include #include #include #include /* Include polybench common header. */ #include /* Include benchmark-specific header. */ /* Default data type is double, default size is 4000. */ #include "atax.h" // Workaround for the editor not finding M_PI // It is exclusive to the GNU C compiler // https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html #ifndef M_PI #define M_PI 3.141 #endif /* Array initialization. */ static void init_array(int nx, int ny, DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny), DATA_TYPE POLYBENCH_1D(x, NY, ny)) { int i, j; /// Initialize the `x` array with PI and its multiples. #pragma omp parallel for num_threads(THREAD_COUNT) schedule(static) for (i = 0; i < ny; i++) { x[i] = i * M_PI; } /// Initialize the `A` matrix with [something?] #pragma omp parallel for num_threads(THREAD_COUNT) schedule(static) for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { A[i][j] = ((DATA_TYPE)i * (j + 1)) / nx; } } } /* DCE code. Must scan the entire live-out data. Can be used also to check the correctness of the output. */ static void print_array(int nx, DATA_TYPE POLYBENCH_1D(y, NX, nx)) { int i; /// Print all numbers in the array sequentially. // Cannot parallelize this: prints have to be sequential to make sense! for (i = 0; i < nx; i++) { fprintf(stderr, DATA_PRINTF_MODIFIER, y[i]); } fprintf(stderr, "\n"); } /* Main computational kernel. The whole function will be timed, including the call and return. */ static void kernel_atax(int nx, int ny, DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny), DATA_TYPE POLYBENCH_1D(x, NY, ny), DATA_TYPE POLYBENCH_1D(y, NY, ny)) { int i, j; #pragma omp parallel for num_threads(THREAD_COUNT) schedule(static) for (i = 0; i < _PB_NY; i++) y[i] = 0; /// This computes... something? I guess whatever ATAX is? // Now this gives a nice speedup, especially with a lot more threads than the count! // THREAD_COUNT * 4 seems to be the best on my local computer. What's the best for the Jetson Nano? #pragma omp parallel for num_threads(THREAD_COUNT) schedule(static) for (i = 0; i < _PB_NX; i++) { /// Every iteration has its own tmp variable DATA_TYPE tmp = 0; for (j = 0; j < _PB_NY; j++) { /// Which gets increased by a bit on every iteration tmp += A[i][j] * x[j]; } for (j = 0; j < _PB_NY; j++) { /// Which is later used for [something else] y[j] = y[j] + A[i][j] * tmp; } } } int main(int argc, char **argv) { /* Retrieve problem size. */ int nx = NX; int ny = NY; /* Variable declaration/allocation. */ POLYBENCH_2D_ARRAY_DECL(A, DATA_TYPE, NX, NY, nx, ny); POLYBENCH_1D_ARRAY_DECL(x, DATA_TYPE, NY, ny); POLYBENCH_1D_ARRAY_DECL(y, DATA_TYPE, NY, ny); /* Initialize array(s). */ init_array(nx, ny, POLYBENCH_ARRAY(A), POLYBENCH_ARRAY(x)); /* Start timer. */ polybench_start_instruments; // polybench_start_instruments; /* Run kernel. */ kernel_atax(nx, ny, POLYBENCH_ARRAY(A), POLYBENCH_ARRAY(x), POLYBENCH_ARRAY(y)); /* Stop and print timer. */ polybench_stop_instruments; polybench_print_instruments; /* Prevent dead-code elimination. All live-out data must be printed by the function call in argument. */ polybench_prevent_dce(print_array(nx, POLYBENCH_ARRAY(y))); /* Be clean. */ POLYBENCH_FREE_ARRAY(A); POLYBENCH_FREE_ARRAY(x); POLYBENCH_FREE_ARRAY(y); return 0; }