HPC ASSIGNMENT 2 —
CU DA PARALLELIZATION

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

IIIIIIIIII




Some changes from last time...

* We noticed the algorithm wasn't allocating memory correctly when computing ATAX = Y!
* |t did not account for non-square matrices, segfaulting if NX # NY!
* We fixed all these problems before proceeding to the optimization

* We noticed that Jeston Nano cannot perform atomic adds with double variables
* So, execution is performed using float variables

POLYBENCH_2D_ARRAY_DECL(A, DATA_TYPE, NX, NY, nx, ny);
POLYBENCH_1D_ARRAY_DECL(x, DATA_TYPE, NY, ny);
POLYBENCH_1D_ARRAY_DECL(y, DATA_TYPE, NY, ny);

POLYBENCH_1D_ARRAY_DECL(tmp, DATA_TYPE, NX, nx);




kernel_atax_cuda(DATA_T

threads =

kernel atax et ) e 1
optimization with R
CU DA stride = @; stride < perThread; stride++

EaCh_thread adds Y vector to A x = threads * stride + blockThreadIdx;
matrix

First lines of the function find the
correct index's number of the

DATA_TYPE tmp = @;
current thread

for ( y = 8; v < NX; y+)
The atomicAdd at the end of the :
function doesn’t work with }
doubles

tmp += A[a_index(x, vy * X[yl;

y = 8; vy < NX; y++)

If HPC_USE_CUDA macro is not
defined then sequential code is atomicAdd(&Y[x], A[a_index(x, y)] * tmp);
executed




init array optimization with CUDA

#ifdef #ifdef

init array cuda x(DATA TYPE* X, threads) init_array_cuda_a(DATA_TYPE® A, threads)

elements = NX * NY;
perThread = NY / threads + 1;

perThread = elements / threads + 1;

blockThreadIdx =

blockThreadTldx =

stride = @; stride < perThread; stride++)
stride = @; stride < perThread; stride++)

iterationIdx = threads * stride + blockThreadIdx; iterationTdx = threads * stride + blockThreadTdx;

if(iterationIdx < NY iterationTdx % NY;
iterationIdx / NY;

X[iterationIdx] = iterationIdx * M PI; if(iterationIdx < elements
A[iterationIdx] = (DATA TYPE)(x * (y + 1)) / NX;

}
This function is similar to the initialization of y endif




What's the speedup?

* The optimized version takes 0,278 seconds to execute all the
program with large dataset

. old time 0,746
*So, the speedup is — =
new time 0,278

= 2,68

* Where do we achieve this speedup?

T




Profiling

* It is better to optimize the kernel atax part or the initialization?
* The kernel atax part, with large dataset, takes 0,35s with sequential code

* The optimized version takes 0,26s, so the speedup is 1,35

* The initialization part takes 0,396s to execute with sequential code
* The optimized version takes 0,0178s with a speedup of 21,9

* The initialization part generates much more speedup, but also kernel atax generates
some speedup

— So, the best choice is to optimize both parts




Experiments on other datasets

0,00344s

1,61 * 10735 0,0112s 0,0647s 0,278s 0,665s

0,0079 0,31 2,90 2,68 2,52

*Speedups written in red are slowdowns




OpenMP vs CUDA

*OpenMP programs are executed with float variables too.
For mini dataset there is no best option than sequential code; OpenMP has only less slowdown




Thanks for the attention!




	Diapositiva 1: HPC ASSIGNMENT 2 – CUDA PARALLELIZATION
	Diapositiva 2: Some changes from last time…
	Diapositiva 3: kernel_atax optimization with CUDA
	Diapositiva 4: init_array optimization with CUDA
	Diapositiva 5: What’s the speedup?
	Diapositiva 6: Profiling
	Diapositiva 7: Experiments on other datasets
	Diapositiva 8: OpenMP vs CUDA
	Diapositiva 9

