/* * BSD 2-Clause License * * Copyright (c) 2020, Alessandro Capotondi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * @file sobel.cu * @author Alessandro Capotondi * @date 5 May 2020 * @brief Stencil 2d - Sobel * * @see https://dolly.fim.unimore.it/2019/course/view.php?id=152 */ #include #include #include #include #include #include #include using namespace cv; using namespace std; #ifndef BLOCK_SIZE #define BLOCK_SIZE 32 #endif #define gpuErrchk(ans) \ { \ gpuAssert((ans), __FILE__, __LINE__); \ } static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true) { if (code != cudaSuccess) { fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } void sobel_host(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height) { #pragma omp parallel for simd collapse(2) for (int y = 1; y < height - 1; y++) { for (int x = 1; x < width - 1; x++) { int dx = (-1 * orig[(y - 1) * width + (x - 1)]) + (-2 * orig[y * width + (x - 1)]) + (-1 * orig[(y + 1) * width + (x - 1)]) + (orig[(y - 1) * width + (x + 1)]) + (2 * orig[y * width + (x + 1)]) + (orig[(y + 1) * width + (x + 1)]); int dy = (orig[(y - 1) * width + (x - 1)]) + (2 * orig[(y - 1) * width + x]) + (orig[(y - 1) * width + (x + 1)]) + (-1 * orig[(y + 1) * width + (x - 1)]) + (-2 * orig[(y + 1) * width + x]) + (-1 * orig[(y + 1) * width + (x + 1)]); out[y * width + x] = sqrt((float)((dx * dx) + (dy * dy))); } } } __global__ void sobel_v1(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height) { int i = threadIdx.y + blockIdx.y * blockDim.y; int j = threadIdx.x + blockIdx.x * blockDim.x; if (j > 0 && i > 0 && j < width - 1 && i < height - 1) { int dx = (-1 * orig[(i - 1) * width + (j - 1)]) + (-2 * orig[i * width + (j - 1)]) + (-1 * orig[(i + 1) * width + (j - 1)]) + (orig[(i - 1) * width + (j + 1)]) + (2 * orig[i * width + (j + 1)]) + (orig[(i + 1) * width + (j + 1)]); int dy = (orig[(i - 1) * width + (j - 1)]) + (2 * orig[(i - 1) * width + j]) + (orig[(i - 1) * width + (j + 1)]) + (-1 * orig[(i + 1) * width + (j - 1)]) + (-2 * orig[(i + 1) * width + j]) + (-1 * orig[(i + 1) * width + (j + 1)]); out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy))); } } __global__ void sobel_v2(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height) { //TODO Declare i and j: global output indexes int i = threadIdx.y + blockIdx.y * blockDim.y; int j = threadIdx.x + blockIdx.x * blockDim.x; //TODO Declare it and jt: Thread row and column of output matrix int it = threadIdx.y; int jt = threadIdx.x; //TODO Declare shared input patch __shared__ unsigned char s_in[BLOCK_SIZE][BLOCK_SIZE]; //TODO Load input patch // Each thread loads one element of the patch s_in[it][jt] = orig[i * width + j]; //TODO Synchronize to make sure the sub-matrices are loaded // before starting the computation __syncthreads(); //TODO if block boundary do if (jt > 0 && it > 0 && jt < BLOCK_SIZE - 1 && it < BLOCK_SIZE - 1 && j > 0 && i > 0 && j < width - 1 && i < height - 1) { int dx = (-1 * s_in[it - 1][jt - 1]) + (-2 * s_in[it][jt - 1]) + (-1 * s_in[it + 1][jt - 1]) + (s_in[it - 1][jt + 1]) + (2 * s_in[it][jt + 1]) + (s_in[it + 1][jt + 1]); int dy = (s_in[it - 1][jt - 1]) + (2 * s_in[it - 1][jt]) + (s_in[it - 1][jt + 1]) + (-1 * s_in[it + 1][jt - 1]) + (-2 * s_in[it + 1][jt]) + (-1 * s_in[it + 1][jt + 1]); out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy))); } else if (j > 0 && i > 0 && j < width - 1 && i < height - 1) { //TODO if not-block boundary do (tip check global boundaries) int dx = (-1 * orig[(i - 1) * width + (j - 1)]) + (-2 * orig[i * width + (j - 1)]) + (-1 * orig[(i + 1) * width + (j - 1)]) + (orig[(i - 1) * width + (j + 1)]) + (2 * orig[i * width + (j + 1)]) + (orig[(i + 1) * width + (j + 1)]); int dy = (orig[(i - 1) * width + (j - 1)]) + (2 * orig[(i - 1) * width + j]) + (orig[(i - 1) * width + (j + 1)]) + (-1 * orig[(i + 1) * width + (j - 1)]) + (-2 * orig[(i + 1) * width + j]) + (-1 * orig[(i + 1) * width + (j + 1)]); out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy))); } } __global__ void sobel_v3(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height) { //TODO Declare i and j: global output indexes (tip: use BLOCK_SIZE-2) int i = threadIdx.y + blockIdx.y * (BLOCK_SIZE - 2); int j = threadIdx.x + blockIdx.x * (BLOCK_SIZE - 2); //TODO Declare it and jt: Thread row and column of output matrix int it = threadIdx.y; int jt = threadIdx.x; //TODO Check if i and j are out of memory if (i >= width && j >= height) return; //TODO Declare shared input patch __shared__ unsigned char s_in[BLOCK_SIZE][BLOCK_SIZE]; //TODO Load input patch // Each thread loads one element of the patch s_in[it][jt] = orig[i * width + j]; //TODO Synchronize to make sure the sub-matrices are loaded // before starting the computation __syncthreads(); //TODO Update block and bound checks if (jt > 0 && it > 0 && jt < BLOCK_SIZE - 1 && it < BLOCK_SIZE - 1 && j > 0 && i > 0 && j < width - 1 && i < height - 1) { int dx = (-1 * s_in[it - 1][jt - 1]) + (-2 * s_in[it][jt - 1]) + (-1 * s_in[it + 1][jt - 1]) + (s_in[it - 1][jt + 1]) + (2 * s_in[it][jt + 1]) + (s_in[it + 1][jt + 1]); int dy = (s_in[it - 1][jt - 1]) + (2 * s_in[it - 1][jt]) + (s_in[it - 1][jt + 1]) + (-1 * s_in[it + 1][jt - 1]) + (-2 * s_in[it + 1][jt]) + (-1 * s_in[it + 1][jt + 1]); out[i * width + j] = sqrt((float)((dx * dx) + (dy * dy))); } } __global__ void sobel_v4(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height) { //TODO Declare i and j: global output indexes (tip: use BLOCK_SIZE) int i = threadIdx.y + blockIdx.y * blockDim.y; int j = threadIdx.x + blockIdx.x * blockDim.x; //TODO Declare it and jt: Thread row and column of output matrix int it = threadIdx.y; int jt = threadIdx.x; //TODO Declare shared input patch (tip: use BLOCK_SIZE+2) __shared__ unsigned char s_in[BLOCK_SIZE + 32][BLOCK_SIZE + 32]; //TODO Load input patch // Each thread loads one element of the patch s_in[it][jt] = orig[i * width + j]; //TODO Check condition and load remaining elements if ((it + BLOCK_SIZE) < BLOCK_SIZE + 2 && (jt) < BLOCK_SIZE + 2 && (i + BLOCK_SIZE) < width && (j) < height) s_in[it + BLOCK_SIZE][jt] = orig[(i + BLOCK_SIZE) * width + j]; if ((it) < BLOCK_SIZE + 2 && (jt + BLOCK_SIZE) < BLOCK_SIZE + 2 && (i) < width && (j + BLOCK_SIZE) < height) s_in[it][jt + BLOCK_SIZE] = orig[i * width + j + BLOCK_SIZE]; if ((it + BLOCK_SIZE) < BLOCK_SIZE + 2 && (jt + BLOCK_SIZE) < BLOCK_SIZE + 2 && (i + BLOCK_SIZE) < width && (j + BLOCK_SIZE) < height) s_in[it + BLOCK_SIZE][jt + BLOCK_SIZE] = orig[(i + BLOCK_SIZE) * width + j + BLOCK_SIZE]; //TODO Synchronize to make sure the sub-matrices are loaded // before starting the computation __syncthreads(); //TODO Update all idx adding y +1 and x +1 if (jt < BLOCK_SIZE && it < BLOCK_SIZE && j < (width - 2) && i < (height - 2)) { int dx = (-1 * s_in[it - 1 + 1][jt - 1 + 1]) + (-2 * s_in[it + 1][jt - 1 + 1]) + (-1 * s_in[it + 1 + 1][jt - 1 + 1]) + (s_in[it - 1 + 1][jt + 1 + 1]) + (2 * s_in[it + 1][jt + 1 + 1]) + (s_in[it + 1 + 1][jt + 1 + 1]); int dy = (s_in[it - 1 + 1][jt - 1 + 1]) + (2 * s_in[it - 1 + 1][jt + 1]) + (s_in[it - 1 + 1][jt + 1 + 1]) + (-1 * s_in[it + 1 + 1][jt - 1 + 1]) + (-2 * s_in[it + 1 + 1][jt + 1]) + (-1 * s_in[it + 1 + 1][jt + 1 + 1]); out[(i + 1) * width + j + 1] = sqrt((float)((dx * dx) + (dy * dy))); } } int main(int argc, char *argv[]) { int iret = 0; struct timespec rt[2]; double wt; // walltime string filename("../data/buzz.jpg"); if (argc > 1) filename = argv[1]; // Load Image Mat image = imread(filename, IMREAD_GRAYSCALE); if (!image.data) { cout << "Could not open or find the image" << std::endl; return -1; } int width = image.size().width; int height = image.size().height; // Create Output Images Mat out1 = image.clone(); Mat out2 = image.clone(); Mat result = image.clone(); memset(out1.ptr(), 0, sizeof(unsigned char) * width * height); memset(out2.ptr(), 0, sizeof(unsigned char) * width * height); memset(result.ptr(), 0, sizeof(unsigned char) * width * height); // Compute CPU Version - Golden Model clock_gettime(CLOCK_REALTIME, rt + 0); sobel_host(image.ptr(), out1.ptr(), width, height); clock_gettime(CLOCK_REALTIME, rt + 1); wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec); printf("Sobel (Host) : %9.6f sec\n", wt); //CUDA Buffer Allocation unsigned char *d_image_in; unsigned char *d_image_out; gpuErrchk(cudaMalloc((void **)&d_image_in, sizeof(unsigned char) * width * height)); gpuErrchk(cudaMalloc((void **)&d_image_out, sizeof(unsigned char) * width * height)); gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height)); clock_gettime(CLOCK_REALTIME, rt + 0); gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice)); dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid((width + BLOCK_SIZE - 1) / BLOCK_SIZE, (height + BLOCK_SIZE - 1) / BLOCK_SIZE); sobel_v1<<>>(d_image_in, d_image_out, width, height); gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost)); clock_gettime(CLOCK_REALTIME, rt + 1); wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec); printf("Sobel-v1 (GPU) : %9.6f sec\n", wt); //Check results absdiff(out1, out2, result); int percentage = countNonZero(result); //Reset Output image memset(out2.ptr(), 0, sizeof(unsigned char) * width * height); gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height)); clock_gettime(CLOCK_REALTIME, rt + 0); gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice)); // dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); // dim3 dimGrid((width + BLOCK_SIZE - 1) / BLOCK_SIZE, (height + BLOCK_SIZE - 1) / BLOCK_SIZE); sobel_v2<<>>(d_image_in, d_image_out, width, height); gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost)); clock_gettime(CLOCK_REALTIME, rt + 1); wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec); printf("Sobel-v2 (GPU) : %9.6f sec\n", wt); //Check results absdiff(out1, out2, result); percentage = countNonZero(result); if (percentage) { printf("Divergence %d\n", percentage); imshow("Output GPU", out2); imshow("error diff", result); waitKey(0); } assert(percentage == 0); //Reset Output image memset(out2.ptr(), 0, sizeof(unsigned char) * width * height); gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height)); clock_gettime(CLOCK_REALTIME, rt + 0); gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice)); //TODO define dimGrid, dimBlock //TODO add sobel_v4 call dim3 dimBlock_v3(BLOCK_SIZE, BLOCK_SIZE); dim3 dimGrid_v3((width + (BLOCK_SIZE - 2) - 1) / (BLOCK_SIZE - 2), (height + (BLOCK_SIZE - 2) - 1) / (BLOCK_SIZE - 2)); sobel_v3<<>>(d_image_in, d_image_out, width, height); gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost)); clock_gettime(CLOCK_REALTIME, rt + 1); wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec); printf("Sobel-v3 (GPU) : %9.6f sec\n", wt); //Check results absdiff(out1, out2, result); percentage = countNonZero(result); if (percentage) { printf("Divergence %d\n", percentage); imshow("Output GPU", out2); imshow("error diff", result); waitKey(0); } assert(percentage == 0); //Reset Output image memset(out2.ptr(), 0, sizeof(unsigned char) * width * height); gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height)); clock_gettime(CLOCK_REALTIME, rt + 0); gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice)); //TODO define dimGrid, dimBlock //TODO add sobel_v4 call sobel_v4<<>>(d_image_in, d_image_out, width, height); gpuErrchk(cudaPeekAtLastError()); gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost)); clock_gettime(CLOCK_REALTIME, rt + 1); wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec); printf("Sobel-v4 (GPU) : %9.6f sec\n", wt); //Check results absdiff(out1, out2, result); percentage = countNonZero(result); if (percentage) { printf("Divergence %d\n", percentage); imshow("Output GPU", out2); imshow("error diff", result); waitKey(0); } assert(percentage == 0); gpuErrchk(cudaFree(d_image_out)); gpuErrchk(cudaFree(d_image_in)); return iret; }