1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-12-01 12:34:20 +00:00
hpc-2022-g3/cuda/lab2/.solutions/constant.cu
Alessandro Capotondi 809d881f2f HPC CUDA Lab 2
2021-05-04 10:12:31 +02:00

208 lines
5.8 KiB
Text

/*
* BSD 2-Clause License
*
* Copyright (c) 2020, Alessandro Capotondi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file constant.cu
* @author Alessandro Capotondi
* @date 27 Mar 2020
* @brief Exercise 2
*
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
*/
#include <assert.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <cuda_runtime.h>
#define gpuErrchk(ans) \
{ \
gpuAssert((ans), __FILE__, __LINE__); \
}
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort)
exit(code);
}
}
extern "C"
{
#include "utils.h"
}
#define TWO02 (1 << 2)
#define TWO04 (1 << 4)
#define TWO08 (1 << 8)
#ifndef N
#define N (1 << 27)
#endif
#ifndef BLOCK_SIZE
#define BLOCK_SIZE (128)
#endif
float K[4098];
//TODO declare constant K
__constant__ float cK[4098];
/*
* Filering
*/
void filter(float * __restrict__ y, int n)
{
#pragma omp parallel for simd schedule(simd: static)
for (int i = 0; i < n; i++)
{
y[i] = y[i] - K[i%4098];
}
}
//TODO GPU Filter implementation
__global__ void filter_v1(float * __restrict__ y, int n)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
y[i] = y[i] - cK[i%4098];
}
//TODO GPU Filter implementation without constant mem
__global__ void filter_v2(float * __restrict__ y, float * __restrict__ k, int n)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
y[i] = y[i] - k[i%4098];
}
int main(int argc, const char **argv)
{
int iret = 0;
int n = N;
float *h_y, *d_y;
float *h_x, *d_x, *d_k;
float *h_z;
if (argc > 1)
n = atoi(argv[1]);
if (NULL == (h_x = (float *)malloc(sizeof(float) * n)))
{
printf("error: memory allocation for 'x'\n");
iret = -1;
}
if (NULL == (h_y = (float *)malloc(sizeof(float) * n)))
{
printf("error: memory allocation for 'y'\n");
iret = -1;
}
if (NULL == (h_z = (float *)malloc(sizeof(float) * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (0 != iret)
{
free(h_y);
free(h_z);
exit(EXIT_FAILURE);
}
//Init Data
float b = rand() % TWO04;
float c = rand() % TWO08;
for (int i = 0; i < 4098; i++)
{
K[i] = b;
}
for (int i = 0; i < n; i++)
{
h_x[i] = h_y[i] = h_z[i] = c / (float)TWO04;
}
start_timer();
filter(h_z, n);
stop_timer();
printf("Filter (Host): %9.3f sec %9.1f MFLOPS\n", elapsed_ns() / 1.0e9, n / ((1.0e6 / 1e9) * elapsed_ns()));
//CUDA Buffer Allocation
gpuErrchk(cudaMalloc((void **)&d_y, sizeof(float) * n));
//TODO: Load Device Constant using cudaMemcpyToSymbol
gpuErrchk(cudaMemcpyToSymbol(cK, K, sizeof(float)*4098));
start_timer();
//TODO Add Code here
cudaMemcpy(d_y, h_y, sizeof(float) * n, cudaMemcpyHostToDevice);
filter_v1<<<((n + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE>>>(d_y, n);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(h_y, d_y, sizeof(float) * n, cudaMemcpyDeviceToHost));
stop_timer();
printf("Filter-v1 (GPU): %9.3f sec %9.1f MFLOPS\n", elapsed_ns() / 1.0e9, n / ((1.0e6 / 1e9) * elapsed_ns()));
//Check Matematical Consistency
for (int i = 0; i < n; ++i)
{
iret = *(int *)(h_y + i) ^ *(int *)(h_z + i);
assert(iret == 0);
}
//-- No-Constant version --
gpuErrchk(cudaMalloc((void **)&d_x, sizeof(float) * n));
gpuErrchk(cudaMalloc((void **)&d_k, sizeof(float) * 4098));
start_timer();
//TODO Add Code here
cudaMemcpy(d_x, h_x, sizeof(float) * n, cudaMemcpyHostToDevice);
cudaMemcpy(d_k, K, sizeof(float) * 4098, cudaMemcpyHostToDevice);
filter_v2<<<((n + BLOCK_SIZE - 1) / BLOCK_SIZE), BLOCK_SIZE>>>(d_x, d_k, n);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(h_x, d_x, sizeof(float) * n, cudaMemcpyDeviceToHost));
stop_timer();
printf("Filter-v2 (GPU): %9.3f sec %9.1f MFLOPS\n", elapsed_ns() / 1.0e9, n / ((1.0e6 / 1e9) * elapsed_ns()));
//Check Matematical Consistency
for (int i = 0; i < n; ++i)
{
iret = *(int *)(h_y + i) ^ *(int *)(h_x + i);
assert(iret == 0);
}
//CUDA Buffer Allocation
free(h_x);
gpuErrchk(cudaFree(d_x));
free(h_y);
gpuErrchk(cudaFree(d_y));
free(h_z);
return 0;
}