mirror of
https://github.com/Steffo99/unimore-hpc-assignments.git
synced 2024-11-26 18:14:23 +00:00
193 lines
5.5 KiB
Text
193 lines
5.5 KiB
Text
/*
|
|
* BSD 2-Clause License
|
|
*
|
|
* Copyright (c) 2020, Alessandro Capotondi
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* @file exercise3.cu
|
|
* @author Alessandro Capotondi
|
|
* @date 27 Mar 2020
|
|
* @brief Exercise 3 - CUDA MATMUL
|
|
*
|
|
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#define gpuErrchk(ans) \
|
|
{ \
|
|
gpuAssert((ans), __FILE__, __LINE__); \
|
|
}
|
|
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
|
|
{
|
|
if (code != cudaSuccess)
|
|
{
|
|
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
|
|
if (abort)
|
|
exit(code);
|
|
}
|
|
}
|
|
|
|
extern "C"
|
|
{
|
|
#include "utils.h"
|
|
}
|
|
|
|
#define TWO02 (1 << 2)
|
|
#define TWO04 (1 << 4)
|
|
#define TWO08 (1 << 8)
|
|
|
|
#ifndef N
|
|
#define N (32)
|
|
#endif
|
|
|
|
void gemm(float * __restrict__ a, float * __restrict__ b, float * __restrict__ c, int n)
|
|
{
|
|
|
|
#pragma omp parallel for collapse(2)
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
for (int j = 0; j < n; ++j)
|
|
{
|
|
float sum = 0.0;
|
|
for (int k = 0; k < n; ++k)
|
|
{
|
|
sum += a[i * n + k] * b[k *n + j];
|
|
}
|
|
c[i * n + j] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief EX 3 - Complete Matrix Multiplication
|
|
*/
|
|
__global__ void gemm_kernel(float * __restrict__ a, float * __restrict__ b, float * __restrict__ c, int n)
|
|
{
|
|
int row = threadIdx.x;
|
|
int col = threadIdx.y;
|
|
|
|
float sum = 0.0;
|
|
for (int k = 0; k < n; ++k)
|
|
{
|
|
sum += a[row * n + k] * b[k * n + col];
|
|
}
|
|
c[row * n + col] = sum;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int n = N, iret = 0;
|
|
float *a, *b, *c, *g;
|
|
struct timespec rt[2];
|
|
double wt; // walltime
|
|
|
|
if (argc > 1)
|
|
n = atoi(argv[1]);
|
|
|
|
if (NULL == (a = (float *)malloc(sizeof(*a) * n * n)))
|
|
{
|
|
printf("error: memory allocation for 'x'\n");
|
|
iret = -1;
|
|
}
|
|
if (NULL == (b = (float *)malloc(sizeof(*b) * n * n)))
|
|
{
|
|
printf("error: memory allocation for 'y'\n");
|
|
iret = -1;
|
|
}
|
|
if (NULL == (c = (float *)malloc(sizeof(*c) * n * n)))
|
|
{
|
|
printf("error: memory allocation for 'z'\n");
|
|
iret = -1;
|
|
}
|
|
if (NULL == (g = (float *)malloc(sizeof(*g) * n * n)))
|
|
{
|
|
printf("error: memory allocation for 'z'\n");
|
|
iret = -1;
|
|
}
|
|
|
|
if (0 != iret)
|
|
{
|
|
free(a);
|
|
free(b);
|
|
free(c);
|
|
free(g);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
//Init Data
|
|
int _b = rand() % TWO04;
|
|
int _c = rand() % TWO08;
|
|
#pragma omp parallel for
|
|
for (int i = 0; i < n * n; i++)
|
|
{
|
|
a[i] = _b / (float)TWO02;
|
|
b[i] = _c / (float)TWO04;
|
|
c[i] = g[i] = 0.0;
|
|
}
|
|
|
|
clock_gettime(CLOCK_REALTIME, rt + 0);
|
|
gemm(a, b, g, n);
|
|
clock_gettime(CLOCK_REALTIME, rt + 1);
|
|
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
|
|
printf("GEMM (Host) : %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
|
|
|
|
//CUDA Buffer Allocation
|
|
float *d_a, *d_b, *d_c;
|
|
gpuErrchk(cudaMalloc((void **)&d_a, sizeof(float) * n * n));
|
|
gpuErrchk(cudaMalloc((void **)&d_b, sizeof(float) * n * n));
|
|
gpuErrchk(cudaMalloc((void **)&d_c, sizeof(float) * n * n));
|
|
|
|
clock_gettime(CLOCK_REALTIME, rt + 0);
|
|
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
|
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
|
|
dim3 dimBlock(n,n);
|
|
dim3 dimGrid(1,1);
|
|
gemm_kernel<<<dimGrid, dimBlock>>> (d_a, d_b, d_c, n);
|
|
gpuErrchk(cudaPeekAtLastError());
|
|
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
|
|
clock_gettime(CLOCK_REALTIME, rt + 1);
|
|
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
|
|
printf("GEMM (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
|
|
|
|
for (int i = 0; i < n * n; i++)
|
|
{
|
|
iret = *(int *)(g + i) ^ *(int *)(c + i);
|
|
assert(iret == 0);
|
|
}
|
|
free(a);
|
|
free(b);
|
|
free(c);
|
|
free(g);
|
|
gpuErrchk(cudaFree(d_a));
|
|
gpuErrchk(cudaFree(d_b));
|
|
gpuErrchk(cudaFree(d_c));
|
|
|
|
return 0;
|
|
}
|