1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-22 16:14:24 +00:00
hpc-2022-g3/cuda/lab2/exercise4.cu
Alessandro Capotondi 809d881f2f HPC CUDA Lab 2
2021-05-04 10:12:31 +02:00

332 lines
11 KiB
Text

/*
* BSD 2-Clause License
*
* Copyright (c) 2020, Alessandro Capotondi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file exercise4.cu
* @author Alessandro Capotondi
* @date 5 May 2020
* @brief Exercise 4 - Stencil 2d - Sobel
*
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
*/
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs/imgcodecs.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace cv;
using namespace std;
#ifndef BLOCK_SIZE
#define BLOCK_SIZE 32
#endif
#define gpuErrchk(ans) \
{ \
gpuAssert((ans), __FILE__, __LINE__); \
}
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort)
exit(code);
}
}
extern "C"
{
#include "utils.h"
}
void sobel_host(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
#pragma omp parallel for simd collapse(2)
for (int y = 1; y < height - 1; y++)
{
for (int x = 1; x < width - 1; x++)
{
int dx = (-1 * orig[(y - 1) * width + (x - 1)]) + (-2 * orig[y * width + (x - 1)]) + (-1 * orig[(y + 1) * width + (x - 1)]) +
(orig[(y - 1) * width + (x + 1)]) + (2 * orig[y * width + (x + 1)]) + (orig[(y + 1) * width + (x + 1)]);
int dy = (orig[(y - 1) * width + (x - 1)]) + (2 * orig[(y - 1) * width + x]) + (orig[(y - 1) * width + (x + 1)]) +
(-1 * orig[(y + 1) * width + (x - 1)]) + (-2 * orig[(y + 1) * width + x]) + (-1 * orig[(y + 1) * width + (x + 1)]);
out[y * width + x] = sqrt((float)((dx * dx) + (dy * dy)));
}
}
}
//TODO Each thread compute one pixel out reading from global memory
__global__ void sobel_v1(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
}
#ifdef V2
//TODO Each thread compute one pixel out reading from shared memory (corner case readed from global memory)
__global__ void sobel_v2(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
//TODO Declare i and j: global output indexes
//TODO Declare it and jt: Thread row and column of output matrix
//TODO Declare shared input patch
//TODO Load input patch
// Each thread loads one element of the patch
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
//TODO if block boundary do
if (jt > 0 && it > 0 && jt < BLOCK_SIZE - 1 && it < BLOCK_SIZE - 1 && j > 0 && i > 0 && j < width - 1 && i < height - 1)
{
}
else if (j > 0 && i > 0 && j < width - 1 && i < height - 1)
{
//TODO if not-block boundary do (tip check global boundaries)
}
}
#endif
#ifdef V3
//TODO Each thread compute one pixel out reading from shared memory.
__global__ void sobel_v3(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
//TODO Declare i and j: global output indexes (tip: use BLOCK_SIZE-2)
//TODO Declare it and jt: Thread row and column of output matrix
//TODO Check if i and j are out of memory
if (i >= width && j >= height)
return;
//TODO Declare shared input patch
//TODO Load input patch
// Each thread loads one element of the patch
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
//TODO Update block and bound checks
if (jt > 0 && it > 0 && jt < BLOCK_SIZE - 1 && it < BLOCK_SIZE - 1 && j > 0 && i > 0 && j < width - 1 && i < height - 1)
{
}
}
#endif
#ifdef V4
//TODO Each thread compute one pixel out reading from shared memory. Avoid thread under-usage
__global__ void sobel_v4(unsigned char *__restrict__ orig, unsigned char *__restrict__ out, int width, int height)
{
//TODO Declare i and j: global output indexes (tip: use BLOCK_SIZE)
//TODO Declare it and jt: Thread row and column of output matrix
//TODO Declare shared input patch (tip: use BLOCK_SIZE+2)
//TODO Load input patch
// Each thread loads one element of the patch
//TODO Check condition and load remaining elements
if ((it + BLOCK_SIZE) < BLOCK_SIZE + 2 && (jt) < BLOCK_SIZE + 2 && (i + BLOCK_SIZE) < width && (j) < height)
s_in[it + BLOCK_SIZE][jt] = orig[(i + BLOCK_SIZE) * width + j];
if ((it) < BLOCK_SIZE + 2 && (jt + BLOCK_SIZE) < BLOCK_SIZE + 2 && (i) < width && (j + BLOCK_SIZE) < height)
s_in[it][jt + BLOCK_SIZE] = orig[i * width + j + BLOCK_SIZE];
if ((it + BLOCK_SIZE) < BLOCK_SIZE + 2 && (jt + BLOCK_SIZE) < BLOCK_SIZE + 2 && (i + BLOCK_SIZE) < width && (j + BLOCK_SIZE) < height)
s_in[it + BLOCK_SIZE][jt + BLOCK_SIZE] = orig[(i + BLOCK_SIZE) * width + j + BLOCK_SIZE];
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
//TODO Update all idx adding y +1 and x +1
if (jt < BLOCK_SIZE && it < BLOCK_SIZE && j < (width - 2) && i < (height - 2))
{
}
}
#endif
int main(int argc, char *argv[])
{
int iret = 0;
struct timespec rt[2];
double wt; // walltime
string filename("data/buzz.jpg");
if (argc > 1)
filename = argv[1];
// Load Image
Mat image = imread(filename, IMREAD_GRAYSCALE);
if (!image.data)
{
cout << "Could not open or find the image" << std::endl;
return -1;
}
int width = image.size().width;
int height = image.size().height;
// Create Output Images
Mat out1 = image.clone();
Mat out2 = image.clone();
Mat result = image.clone();
memset(out1.ptr(), 0, sizeof(unsigned char) * width * height);
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
memset(result.ptr(), 0, sizeof(unsigned char) * width * height);
// Compute CPU Version - Golden Model
clock_gettime(CLOCK_REALTIME, rt + 0);
sobel_host(image.ptr(), out1.ptr(), width, height);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel (Host) : %9.6f sec\n", wt);
//CUDA Buffer Allocation
unsigned char *d_image_in;
unsigned char *d_image_out;
gpuErrchk(cudaMalloc((void **)&d_image_in, sizeof(unsigned char) * width * height));
gpuErrchk(cudaMalloc((void **)&d_image_out, sizeof(unsigned char) * width * height));
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
//TODO Copy Image to the device
//TODO Define Grid and Block
//TODO Launch Kernel sobel_v1
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v1 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
int percentage = countNonZero(result);
#ifdef V2
//Reset Output image
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
//TODO Copy Image to the device
//TODO Define Grid and Block
//TODO Launch Kernel sobel_v2
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v2 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
percentage = countNonZero(result);
if (percentage)
{
printf("Divergence %d\n", percentage);
imshow("Output GPU", out2);
imshow("error diff", result);
waitKey(0);
}
assert(percentage == 0);
#endif
#ifdef V3
//Reset Output image
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_image_in, image.ptr(), sizeof(unsigned char) * width * height, cudaMemcpyHostToDevice));
//TODO Copy Image to the device
//TODO Define Grid and Block
//TODO Launch Kernel sobel_v3
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v3 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
percentage = countNonZero(result);
if (percentage)
{
printf("Divergence %d\n", percentage);
imshow("Output GPU", out2);
imshow("error diff", result);
waitKey(0);
}
assert(percentage == 0);
#endif
#ifdef V4
//Reset Output image
memset(out2.ptr(), 0, sizeof(unsigned char) * width * height);
gpuErrchk(cudaMemset(d_image_out, 0, sizeof(unsigned char) * width * height));
clock_gettime(CLOCK_REALTIME, rt + 0);
//TODO Copy Image to the device
//TODO Define Grid and Block
//TODO Launch Kernel sobel_v4
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(out2.ptr(), d_image_out, sizeof(unsigned char) * width * height, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("Sobel-v4 (GPU) : %9.6f sec\n", wt);
//Check results
absdiff(out1, out2, result);
percentage = countNonZero(result);
if (percentage)
{
printf("Divergence %d\n", percentage);
imshow("Output GPU", out2);
imshow("error diff", result);
waitKey(0);
}
assert(percentage == 0);
#endif
gpuErrchk(cudaFree(d_image_out));
gpuErrchk(cudaFree(d_image_in));
return iret;
}