1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-23 00:24:23 +00:00
hpc-2022-g3/openmp/lab2/.solutions/jacobi-omp1.c
Alessandro Capotondi 73b261c471 HPC OpenMP Lab 2
2021-04-15 18:47:41 +02:00

279 lines
9 KiB
C

/*
* BSD 2-Clause License
*
* Copyright (c) 2020, Alessandro Capotondi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file jacobi.c
* @author Alessandro Capotondi
* @date 27 Mar 2020
* @brief This code solves the steady state heat equation on a rectangular region.
* This code solves the steady state heat equation on a rectangular region.
* The sequential version of this program needs approximately
* 18/epsilon iterations to complete.
* The physical region, and the boundary conditions, are suggested
* by this diagram;
* W = 0
* +------------------+
* | |
* W = 100 | | W = 100
* | |
* +------------------+
* W = 100
* The region is covered with a grid of M by N nodes, and an N by N
* array W is used to record the temperature. The correspondence between
* array indices and locations in the region is suggested by giving the
* indices of the four corners:
* I = 0
* [0][0]-------------[0][N-1]
* | |
* J = 0 | | J = N-1
* | |
* [M-1][0]-----------[M-1][N-1]
* I = M-1
* The steady state solution to the discrete heat equation satisfies the
* following condition at an interior grid point:
* W[Central] = (1/4) * ( W[North] + W[South] + W[East] + W[West] )
* where "Central" is the index of the grid point, "North" is the index
* of its immediate neighbor to the "north", and so on.
*
* Given an approximate solution of the steady state heat equation, a
* "better" solution is given by replacing each interior point by the
* average of its 4 neighbors - in other words, by using the condition
* as an ASSIGNMENT statement:
* W[Central] <= (1/4) * ( W[North] + W[South] + W[East] + W[West] )
* If this process is repeated often enough, the difference between successive
* estimates of the solution will go to zero.
* This program carries out such an iteration, using a tolerance specified by
* the user, and writes the final estimate of the solution to a file that can
* be used for graphic processing.
* icensing:
* This code is distributed under the GNU LGPL license.
* odified:
* 18 October 2011
* uthor:
* Original C version by Michael Quinn.
* This C version by John Burkardt.
* eference:
* Michael Quinn,
* Parallel Programming in C with MPI and OpenMP,
* McGraw-Hill, 2004,
* ISBN13: 978-0071232654,
* LC: QA76.73.C15.Q55.
* ocal parameters:
* Local, double DIFF, the norm of the change in the solution from one iteration
* to the next.
* Local, double MEAN, the average of the boundary values, used to initialize
* the values of the solution in the interior.
* Local, double U[M][N], the solution at the previous iteration.
* Local, double W[M][N], the solution computed at the latest iteration.
*
*
* @see https://en.wikipedia.org/wiki/Jacobi_method
* @see http://algo.ing.unimo.it/people/andrea/Didattica/HPC/index.html
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include "utils.h"
static int N;
static int MAX_ITERATIONS;
static int SEED;
static double CONVERGENCE_THRESHOLD;
static FILE *data;
#define SEPARATOR "------------------------------------\n"
// Return the current time in seconds since the Epoch
double get_timestamp();
// Parse command line arguments to set solver parameters
void parse_arguments(int argc, char *argv[]);
// Run the Jacobi solver
// Returns the number of iterations performed
int run(double *A, double *xtmp)
{
int iter = 0, iterations_print = 1;
double err = 0.0;
do
{
err = 0.0;
#pragma omp parallel for reduction(max \
: err) num_threads(NTHREADS)
for (int i = 1; i < N - 1; i++)
{
for (int j = 1; j < N - 1; j++)
{
xtmp[i * N + j] = 0.25 * (A[(i - 1) * N + j] + A[(i + 1) * N + j] + A[i * N + j - 1] + A[i * N + j + 1]);
err = fmax(err, fabs(xtmp[i * N + j] - A[i * N + j]));
}
}
#pragma omp parallel for num_threads(NTHREADS)
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
A[i * N + j] = xtmp[i * N + j];
}
}
iter++;
#ifdef DEBUG
if (iter == iterations_print)
{
printf(" %8d %f\n", iter, err);
iterations_print = 2 * iterations_print;
}
#endif
} while (err > CONVERGENCE_THRESHOLD && iter < MAX_ITERATIONS);
return iter;
}
int main(int argc, char *argv[])
{
parse_arguments(argc, argv);
double *A = malloc(N * N * sizeof(double));
double *xtmp = malloc(N * N * sizeof(double));
printf(SEPARATOR);
printf("Matrix size: %dx%d\n", N, N);
printf("Maximum iterations: %d\n", MAX_ITERATIONS);
printf("Convergence threshold: %lf\n", CONVERGENCE_THRESHOLD);
printf(SEPARATOR);
for (int ii = 0; ii < N; ii++)
{
for (int jj = 0; jj < N; jj++)
{
double f;
fread(&f, sizeof(double), 1, data);
A[ii * N + jj] = f;
}
}
// Run Jacobi solver
start_timer();
int itr = run(A, xtmp);
stop_timer();
printf("Iterations = %d\n", itr);
printf("Solver runtime = %lf ms\n", elapsed_ns() / 1E6);
if (itr == MAX_ITERATIONS)
printf("WARNING: solution did not converge\n");
printf(SEPARATOR);
free(A);
free(xtmp);
fclose(data);
return 0;
}
int parse_int(const char *str)
{
char *next;
int value = strtoul(str, &next, 10);
return strlen(next) ? -1 : value;
}
double parse_double(const char *str)
{
char *next;
double value = strtod(str, &next);
return strlen(next) ? -1 : value;
}
void parse_arguments(int argc, char *argv[])
{
// Set default values
N = 500;
MAX_ITERATIONS = 2000;
CONVERGENCE_THRESHOLD = 0.001;
SEED = 0;
for (int i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "--convergence") || !strcmp(argv[i], "-c"))
{
if (++i >= argc || (CONVERGENCE_THRESHOLD = parse_double(argv[i])) < 0)
{
printf("Invalid convergence threshold\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--iterations") || !strcmp(argv[i], "-i"))
{
if (++i >= argc || (MAX_ITERATIONS = parse_int(argv[i])) < 0)
{
printf("Invalid number of iterations\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--norder") || !strcmp(argv[i], "-n"))
{
if (++i >= argc || (N = parse_int(argv[i])) < 0)
{
printf("Invalid matrix order\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
{
printf("\n");
printf("Usage: ./jacobi [OPTIONS]\n\n");
printf("Options:\n");
printf(" -h --help Print this message\n");
printf(" -c --convergence C Set convergence threshold\n");
printf(" -i --iterations I Set maximum number of iterations\n");
printf(" -n --norder N Set maxtrix order (500 or 1000)\n");
printf("\n");
exit(0);
}
else
{
printf("Unrecognized argument '%s' (try '--help')\n", argv[i]);
exit(1);
}
}
if (N == 1000)
data = fopen("data/jacobi-1000.bin", "rb");
else if (N == 500)
data = fopen("data/jacobi-500.bin", "rb");
else
{
printf("Invalid matrix order\n");
exit(1);
}
}