1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-29 03:24:22 +00:00
hpc-2022-g3/cuda/lab2/.solutions/exercise2.cu
Alessandro Capotondi 809d881f2f HPC CUDA Lab 2
2021-05-04 10:12:31 +02:00

355 lines
12 KiB
Text

/*
* BSD 2-Clause License
*
* Copyright (c) 2020, Alessandro Capotondi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file exercise2.cu
* @author Alessandro Capotondi
* @date 5 May 2020
* @brief Exercise 3 - CUDA MATMUL Optimized
*
* @see https://dolly.fim.unimore.it/2019/course/view.php?id=152
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define gpuErrchk(ans) \
{ \
gpuAssert((ans), __FILE__, __LINE__); \
}
static inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort)
exit(code);
}
}
extern "C"
{
#include "utils.h"
}
#define TWO02 (1 << 2)
#define TWO04 (1 << 4)
#define TWO08 (1 << 8)
#ifndef N
#define N (1 << 10)
#endif
#ifndef TILE_W
#define TILE_W 128
#endif
#ifndef BLOCK_SIZE
#define BLOCK_SIZE 32
#endif
void gemm(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
{
#pragma omp parallel for collapse(2)
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
float sum = 0.0;
for (int k = 0; k < n; ++k)
{
sum += a[i * n + k] * b[k * n + j];
}
c[i * n + j] = sum;
}
}
}
__global__ void gemm_v1(float * __restrict__ a, float * __restrict__ b, float * __restrict__ c, int n)
{
int row = threadIdx.x + blockIdx.x * blockDim.x;
int col = threadIdx.y + blockIdx.y * blockDim.y;
float sum = 0.0;
for (int k = 0; k < n; ++k)
{
sum += a[row * n + k] * b[k * n + col];
}
c[row * n + col] = sum;
}
__device__ int get_offset(int idx_i, int idx_j, int n)
{
return idx_i * n * BLOCK_SIZE + idx_j * BLOCK_SIZE;
}
__global__ void gemm_v2(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
{
//TODO Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
//TODO Block row and column
int ib = blockIdx.y;
int jb = blockIdx.x;
//TODO Thread row and column within Csub
int it = threadIdx.y;
int jt = threadIdx.x;
int a_offset, b_offset, c_offset;
//TODO Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0.0f;
//TODO Loop over all the sub-matrices of A and B that are
// required to compute Csub.
// Multiply each pair of sub-matrices together
// and accumulate the results.
for (int kb = 0; kb < (n / BLOCK_SIZE); ++kb)
{
//TODO Get the starting address (a_offset) of Asub
// (sub-matrix of A of dimension BLOCK_SIZE x BLOCK_SIZE)
// Asub is located i_block sub-matrices to the right and
// k_block sub-matrices down from the upper-left corner of A
a_offset = get_offset(ib, kb, n);
//TODO Get the starting address (b_offset) of Bsub
b_offset = get_offset(kb, jb, n);
//TODO Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[it][jt] = a[a_offset + it * n + jt];
Bs[it][jt] = b[b_offset + it * n + jt];
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
//TODO Multiply As and Bs together
for (int k = 0; k < BLOCK_SIZE; ++k)
{
Cvalue += As[it][k] * Bs[k][jt];
}
//TODO Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
c_offset = get_offset(ib, jb, n);
//TODO Each thread block computes one sub-matrix Csub of C
c[c_offset + it * n + jt] = Cvalue;
}
__global__ void gemm_v3(float *__restrict__ a, float *__restrict__ b, float *__restrict__ c, int n)
{
//TODO Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
//TODO Block row and column
int ib = blockIdx.y;
int jb = blockIdx.x;
//TODO Thread row and column within Csub
int it = threadIdx.y;
int jt = threadIdx.x;
int a_offset, b_offset, c_offset;
//TODO Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0.0f;
//TODO Loop over all the sub-matrices of A and B that are
// required to compute Csub.
// Multiply each pair of sub-matrices together
// and accumulate the results.
for (int kb = 0; kb < (n / BLOCK_SIZE); ++kb)
{
//TODO Get the starting address (a_offset) of Asub
// (sub-matrix of A of dimension BLOCK_SIZE x BLOCK_SIZE)
// Asub is located i_block sub-matrices to the right and
// k_block sub-matrices down from the upper-left corner of A
a_offset = get_offset(ib, kb, n);
//TODO Get the starting address (b_offset) of Bsub
b_offset = get_offset(ib, kb, n);
//TODO Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[it][jt] = a[a_offset + it * n + jt];
Bs[it][jt] = b[b_offset + it * n + jt];
//TODO Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
//TODO Multiply As and Bs together
for (int k = 0; k < BLOCK_SIZE; ++k)
{
Cvalue += As[it][k] * Bs[k][jt];
}
//TODO Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
c_offset = get_offset(ib, jb, n);
//TODO Each thread block computes one sub-matrix Csub of C
c[c_offset + it * n + jt] = Cvalue;
}
int main(int argc, char *argv[])
{
int n = N, iret = 0;
float *a, *b, *c, *g;
struct timespec rt[2];
double wt; // walltime
if (argc > 1)
n = atoi(argv[1]);
if (NULL == (a = (float *)malloc(sizeof(*a) * n * n)))
{
printf("error: memory allocation for 'x'\n");
iret = -1;
}
if (NULL == (b = (float *)malloc(sizeof(*b) * n * n)))
{
printf("error: memory allocation for 'y'\n");
iret = -1;
}
if (NULL == (c = (float *)malloc(sizeof(*c) * n * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (NULL == (g = (float *)malloc(sizeof(*g) * n * n)))
{
printf("error: memory allocation for 'z'\n");
iret = -1;
}
if (0 != iret)
{
free(a);
free(b);
free(c);
free(g);
exit(EXIT_FAILURE);
}
//Init Data
int _b = rand() % TWO04;
int _c = rand() % TWO08;
#pragma omp parallel for
for (int i = 0; i < n * n; i++)
{
a[i] = _b / (float)TWO02;
b[i] = _c / (float)TWO04;
c[i] = g[i] = 0.0;
}
clock_gettime(CLOCK_REALTIME, rt + 0);
gemm(a, b, g, n);
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM (Host) : %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
//CUDA Buffer Allocation
float *d_a, *d_b, *d_c;
gpuErrchk(cudaMalloc((void **)&d_a, sizeof(float) * n * n));
gpuErrchk(cudaMalloc((void **)&d_b, sizeof(float) * n * n));
gpuErrchk(cudaMalloc((void **)&d_c, sizeof(float) * n * n));
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid((n + (BLOCK_SIZE)-1) / (BLOCK_SIZE), (n + (BLOCK_SIZE)-1) / (BLOCK_SIZE));
gemm_v1<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, n);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM-v1 (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
for (int i = 0; i < n * n; i++)
{
iret = *(int *)(g + i) ^ *(int *)(c + i);
assert(iret == 0);
}
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
//dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
//dim3 dimGrid((n + (BLOCK_SIZE)-1) / (BLOCK_SIZE), (n + (BLOCK_SIZE)-1) / (BLOCK_SIZE));
gemm_v2<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, n);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM-v2 (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
for (int i = 0; i < n * n; i++)
{
iret = *(int *)(g + i) ^ *(int *)(c + i);
assert(iret == 0);
}
clock_gettime(CLOCK_REALTIME, rt + 0);
gpuErrchk(cudaMemcpy(d_a, a, sizeof(float) * n * n, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_b, b, sizeof(float) * n * n, cudaMemcpyHostToDevice));
//dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
//dim3 dimGrid((n + (BLOCK_SIZE)-1) / (BLOCK_SIZE), (n + (BLOCK_SIZE)-1) / (BLOCK_SIZE));
gemm_v3<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, n);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaMemcpy(c, d_c, sizeof(float) * n * n, cudaMemcpyDeviceToHost));
clock_gettime(CLOCK_REALTIME, rt + 1);
wt = (rt[1].tv_sec - rt[0].tv_sec) + 1.0e-9 * (rt[1].tv_nsec - rt[0].tv_nsec);
printf("GEMM-v3 (GPU): %9.3f sec %9.1f GFLOPS\n", wt, 2.0 * n * n * n / (1.0e9 * wt));
for (int i = 0; i < n * n; i++)
{
iret = *(int *)(g + i) ^ *(int *)(c + i);
assert(iret == 0);
}
free(a);
free(b);
free(c);
free(g);
gpuErrchk(cudaFree(d_a));
gpuErrchk(cudaFree(d_b));
gpuErrchk(cudaFree(d_c));
return 0;
}