1
Fork 0
mirror of https://github.com/Steffo99/unimore-hpc-assignments.git synced 2024-11-23 08:34:23 +00:00
hpc-2022-g3/OpenMP/linear-algebra/solvers/gramschmidt/gramschmidt.c
Alessandro Capotondi e11b42a518 init commit
2022-11-11 13:23:45 +01:00

137 lines
3.6 KiB
C

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
/* Include polybench common header. */
#include <polybench.h>
/* Include benchmark-specific header. */
/* Default data type is double, default size is 512. */
#include "gramschmidt.h"
/* Array initialization. */
static void init_array(int ni, int nj,
DATA_TYPE POLYBENCH_2D(A, NI, NJ, ni, nj),
DATA_TYPE POLYBENCH_2D(R, NJ, NJ, nj, nj),
DATA_TYPE POLYBENCH_2D(Q, NI, NJ, ni, nj))
{
int i, j;
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)
{
A[i][j] = ((DATA_TYPE)i * j) / ni;
Q[i][j] = ((DATA_TYPE)i * (j + 1)) / nj;
}
for (i = 0; i < nj; i++)
for (j = 0; j < nj; j++)
R[i][j] = ((DATA_TYPE)i * (j + 2)) / nj;
}
/* DCE code. Must scan the entire live-out data.
Can be used also to check the correctness of the output. */
static void print_array(int ni, int nj,
DATA_TYPE POLYBENCH_2D(A, NI, NJ, ni, nj),
DATA_TYPE POLYBENCH_2D(R, NJ, NJ, nj, nj),
DATA_TYPE POLYBENCH_2D(Q, NI, NJ, ni, nj))
{
int i, j;
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)
{
fprintf(stderr, DATA_PRINTF_MODIFIER, A[i][j]);
if (i % 20 == 0)
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
for (i = 0; i < nj; i++)
for (j = 0; j < nj; j++)
{
fprintf(stderr, DATA_PRINTF_MODIFIER, R[i][j]);
if (i % 20 == 0)
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)
{
fprintf(stderr, DATA_PRINTF_MODIFIER, Q[i][j]);
if (i % 20 == 0)
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
/* Main computational kernel. The whole function will be timed,
including the call and return. */
static void kernel_gramschmidt(int ni, int nj,
DATA_TYPE POLYBENCH_2D(A, NI, NJ, ni, nj),
DATA_TYPE POLYBENCH_2D(R, NJ, NJ, nj, nj),
DATA_TYPE POLYBENCH_2D(Q, NI, NJ, ni, nj))
{
int i, j, k;
DATA_TYPE nrm;
for (k = 0; k < _PB_NJ; k++)
{
nrm = 0;
for (i = 0; i < _PB_NI; i++)
nrm += A[i][k] * A[i][k];
R[k][k] = sqrt(nrm);
for (i = 0; i < _PB_NI; i++)
Q[i][k] = A[i][k] / R[k][k];
for (j = k + 1; j < _PB_NJ; j++)
{
R[k][j] = 0;
for (i = 0; i < _PB_NI; i++)
R[k][j] += Q[i][k] * A[i][j];
for (i = 0; i < _PB_NI; i++)
A[i][j] = A[i][j] - Q[i][k] * R[k][j];
}
}
}
int main(int argc, char **argv)
{
/* Retrieve problem size. */
int ni = NI;
int nj = NJ;
/* Variable declaration/allocation. */
POLYBENCH_2D_ARRAY_DECL(A, DATA_TYPE, NI, NJ, ni, nj);
POLYBENCH_2D_ARRAY_DECL(R, DATA_TYPE, NJ, NJ, nj, nj);
POLYBENCH_2D_ARRAY_DECL(Q, DATA_TYPE, NI, NJ, ni, nj);
/* Initialize array(s). */
init_array(ni, nj,
POLYBENCH_ARRAY(A),
POLYBENCH_ARRAY(R),
POLYBENCH_ARRAY(Q));
/* Start timer. */
polybench_start_instruments;
/* Run kernel. */
kernel_gramschmidt(ni, nj,
POLYBENCH_ARRAY(A),
POLYBENCH_ARRAY(R),
POLYBENCH_ARRAY(Q));
/* Stop and print timer. */
polybench_stop_instruments;
polybench_print_instruments;
/* Prevent dead-code elimination. All live-out data must be printed
by the function call in argument. */
polybench_prevent_dce(print_array(ni, nj, POLYBENCH_ARRAY(A), POLYBENCH_ARRAY(R), POLYBENCH_ARRAY(Q)));
/* Be clean. */
POLYBENCH_FREE_ARRAY(A);
POLYBENCH_FREE_ARRAY(R);
POLYBENCH_FREE_ARRAY(Q);
return 0;
}