mirror of
https://github.com/Steffo99/unimore-hpc-assignments.git
synced 2024-11-23 08:34:23 +00:00
127 lines
3.6 KiB
C
127 lines
3.6 KiB
C
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
/* Include polybench common header. */
|
|
#include <polybench.h>
|
|
|
|
/* Include benchmark-specific header. */
|
|
/* Default data type is double, default size is 4000. */
|
|
#include "atax.h"
|
|
|
|
// Workaround for the editor not finding M_PI
|
|
// It is exclusive to the GNU C compiler
|
|
// https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html
|
|
#ifndef M_PI
|
|
#define M_PI 3.141
|
|
#endif
|
|
|
|
/* Array initialization. */
|
|
static void init_array(int nx, int ny,
|
|
DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny),
|
|
DATA_TYPE POLYBENCH_1D(x, NY, ny))
|
|
{
|
|
int i, j;
|
|
|
|
/// Initialize the `x` array with PI and its multiples.
|
|
#pragma omp parallel for num_threads(THREAD_COUNT) schedule(static)
|
|
for (i = 0; i < ny; i++) {
|
|
x[i] = i * M_PI;
|
|
}
|
|
|
|
/// Initialize the `A` matrix with [something?]
|
|
// Using 4 threads here slows everything down: why?
|
|
// #pragma omp parallel for num_threads(4) schedule(static)
|
|
for (i = 0; i < nx; i++)
|
|
for (j = 0; j < ny; j++)
|
|
A[i][j] = ((DATA_TYPE)i * (j + 1)) / nx;
|
|
}
|
|
|
|
/* DCE code. Must scan the entire live-out data.
|
|
Can be used also to check the correctness of the output. */
|
|
static void print_array(int nx,
|
|
DATA_TYPE POLYBENCH_1D(y, NX, nx))
|
|
{
|
|
int i;
|
|
|
|
// Cannot parallelize this: prints have to be sequential to make sense!
|
|
for (i = 0; i < nx; i++)
|
|
{
|
|
fprintf(stderr, DATA_PRINTF_MODIFIER, y[i]);
|
|
if (i % 20 == 0)
|
|
fprintf(stderr, "\n");
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
/* Main computational kernel. The whole function will be timed,
|
|
including the call and return. */
|
|
static void kernel_atax(int nx, int ny,
|
|
DATA_TYPE POLYBENCH_2D(A, NX, NY, nx, ny),
|
|
DATA_TYPE POLYBENCH_1D(x, NY, ny),
|
|
DATA_TYPE POLYBENCH_1D(y, NY, ny))
|
|
{
|
|
int i, j;
|
|
|
|
#pragma omp parallel for num_threads(THREAD_COUNT) schedule(static)
|
|
for (i = 0; i < _PB_NY; i++)
|
|
y[i] = 0;
|
|
|
|
/// This computes... something? I guess whatever ATAX is?
|
|
// Now this gives a nice speedup, especially with a lot more threads than the count!
|
|
// THREAD_COUNT * 4 seems to be the best on my local computer. What's the best for the Jetson Nano?
|
|
#pragma omp parallel for num_threads(THREAD_COUNT * 4) schedule(static)
|
|
for (i = 0; i < _PB_NX; i++)
|
|
{
|
|
/// Every iteration has its own tmp variable
|
|
DATA_TYPE tmp = 0;
|
|
|
|
for (j = 0; j < _PB_NY; j++)
|
|
/// Which gets increased by a bit on every iteration
|
|
tmp += A[i][j] * x[j];
|
|
|
|
for (j = 0; j < _PB_NY; j++)
|
|
/// Which is later used for [something else]
|
|
y[j] = y[j] + A[i][j] * tmp;
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
/* Retrieve problem size. */
|
|
int nx = NX;
|
|
int ny = NY;
|
|
|
|
/* Variable declaration/allocation. */
|
|
POLYBENCH_2D_ARRAY_DECL(A, DATA_TYPE, NX, NY, nx, ny);
|
|
POLYBENCH_1D_ARRAY_DECL(x, DATA_TYPE, NY, ny);
|
|
POLYBENCH_1D_ARRAY_DECL(y, DATA_TYPE, NY, ny);
|
|
|
|
/* Initialize array(s). */
|
|
init_array(nx, ny, POLYBENCH_ARRAY(A), POLYBENCH_ARRAY(x));
|
|
|
|
/* Start timer. */
|
|
polybench_start_instruments;
|
|
|
|
/* Run kernel. */
|
|
kernel_atax(nx, ny,
|
|
POLYBENCH_ARRAY(A),
|
|
POLYBENCH_ARRAY(x),
|
|
POLYBENCH_ARRAY(y));
|
|
|
|
/* Stop and print timer. */
|
|
polybench_stop_instruments;
|
|
polybench_print_instruments;
|
|
|
|
/* Prevent dead-code elimination. All live-out data must be printed
|
|
by the function call in argument. */
|
|
polybench_prevent_dce(print_array(nx, POLYBENCH_ARRAY(y)));
|
|
|
|
/* Be clean. */
|
|
POLYBENCH_FREE_ARRAY(A);
|
|
POLYBENCH_FREE_ARRAY(x);
|
|
POLYBENCH_FREE_ARRAY(y);
|
|
|
|
return 0;
|
|
}
|