kernel-hacking-2024-linux-s.../arch/powerpc/kernel/iommu.c
Shivaprasad G Bhat f431a8cde7 powerpc/iommu: Reimplement the iommu_table_group_ops for pSeries
PPC64 IOMMU API defines iommu_table_group_ops which handles DMA
windows for PEs, their ownership transfer, create/set/unset the TCE
tables for the Dynamic DMA wundows(DDW). VFIOS uses these APIs for
support on POWER.

The commit 9d67c94335 ("powerpc/iommu: Add "borrowing"
iommu_table_group_ops") implemented partial support for this API with
"borrow" mechanism wherein the DMA windows if created already by the
host driver, they would be available for VFIO to use. Also, it didn't
have the support to control/modify the window size or the IO page
size.

The current patch implements all the necessary iommu_table_group_ops
APIs there by avoiding the "borrrowing". So, just the way it is on the
PowerNV platform, with this patch the iommu table group ownership is
transferred to the VFIO PPC subdriver, the iommu table, DMA windows
creation/deletion all driven through the APIs.

The pSeries uses the query-pe-dma-window, create-pe-dma-window and
reset-pe-dma-window RTAS calls for DMA window creation, deletion and
reset to defaul. The RTAs calls do show some minor differences to the
way things are to be handled on the pSeries which are listed below.

* On pSeries, the default DMA window size is "fixed" cannot be custom
sized as requested by the user. For non-SRIOV VFs, It is fixed at 2GB
and for SRIOV VFs, its variable sized based on the capacity assigned
to it during the VF assignment to the LPAR. So, for the  default DMA
window alone the size if requested less than tce32_size, the smaller
size is enforced using the iommu table->it_size.

* The DMA start address for 32-bit window is 0, and for the 64-bit
window in case of PowerNV is hardcoded to TVE select (bit 59) at 512PiB
offset. This address is returned at the time of create_table() API call
(even before the window is created), the subsequent set_window() call
actually opens the DMA window. On pSeries, the DMA start address for
32-bit window is known from the 'ibm,dma-window' DT property. However,
the 64-bit window start address is not known until the create-pe-dma
RTAS call is made. So, the create_table() which returns the DMA window
start address actually opens the DMA window and returns the DMA start
address as returned by the Hypervisor for the create-pe-dma RTAS call.

* The reset-pe-dma RTAS call resets the DMA windows and restores the
default DMA window, however it does not clear the TCE table entries
if there are any. In case of ownership transfer from platform domain
which used direct mapping, the patch chooses remove-pe-dma instead of
reset-pe for the 64-bit window intentionally so that the
clear_dma_window() is called.

Other than the DMA window management changes mentioned above, the
patch also brings back the userspace view for the single level TCE
as it existed before commit 090bad39b2 ("powerpc/powernv: Add
indirect levels to it_userspace") along with the relavent
refactoring.

Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/171923275958.1397.907964437142542242.stgit@linux.ibm.com
2024-06-28 17:03:40 +10:00

1316 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation
*
* Rewrite, cleanup, new allocation schemes, virtual merging:
* Copyright (C) 2004 Olof Johansson, IBM Corporation
* and Ben. Herrenschmidt, IBM Corporation
*
* Dynamic DMA mapping support, bus-independent parts.
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/bitmap.h>
#include <linux/iommu-helper.h>
#include <linux/crash_dump.h>
#include <linux/hash.h>
#include <linux/fault-inject.h>
#include <linux/pci.h>
#include <linux/iommu.h>
#include <linux/sched.h>
#include <linux/debugfs.h>
#include <linux/vmalloc.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/kdump.h>
#include <asm/fadump.h>
#include <asm/vio.h>
#include <asm/tce.h>
#include <asm/mmu_context.h>
#include <asm/ppc-pci.h>
#define DBG(...)
#ifdef CONFIG_IOMMU_DEBUGFS
static int iommu_debugfs_weight_get(void *data, u64 *val)
{
struct iommu_table *tbl = data;
*val = bitmap_weight(tbl->it_map, tbl->it_size);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(iommu_debugfs_fops_weight, iommu_debugfs_weight_get, NULL, "%llu\n");
static void iommu_debugfs_add(struct iommu_table *tbl)
{
char name[10];
struct dentry *liobn_entry;
sprintf(name, "%08lx", tbl->it_index);
liobn_entry = debugfs_create_dir(name, iommu_debugfs_dir);
debugfs_create_file_unsafe("weight", 0400, liobn_entry, tbl, &iommu_debugfs_fops_weight);
debugfs_create_ulong("it_size", 0400, liobn_entry, &tbl->it_size);
debugfs_create_ulong("it_page_shift", 0400, liobn_entry, &tbl->it_page_shift);
debugfs_create_ulong("it_reserved_start", 0400, liobn_entry, &tbl->it_reserved_start);
debugfs_create_ulong("it_reserved_end", 0400, liobn_entry, &tbl->it_reserved_end);
debugfs_create_ulong("it_indirect_levels", 0400, liobn_entry, &tbl->it_indirect_levels);
debugfs_create_ulong("it_level_size", 0400, liobn_entry, &tbl->it_level_size);
}
static void iommu_debugfs_del(struct iommu_table *tbl)
{
char name[10];
sprintf(name, "%08lx", tbl->it_index);
debugfs_lookup_and_remove(name, iommu_debugfs_dir);
}
#else
static void iommu_debugfs_add(struct iommu_table *tbl){}
static void iommu_debugfs_del(struct iommu_table *tbl){}
#endif
static int novmerge;
static void __iommu_free(struct iommu_table *, dma_addr_t, unsigned int);
static int __init setup_iommu(char *str)
{
if (!strcmp(str, "novmerge"))
novmerge = 1;
else if (!strcmp(str, "vmerge"))
novmerge = 0;
return 1;
}
__setup("iommu=", setup_iommu);
static DEFINE_PER_CPU(unsigned int, iommu_pool_hash);
/*
* We precalculate the hash to avoid doing it on every allocation.
*
* The hash is important to spread CPUs across all the pools. For example,
* on a POWER7 with 4 way SMT we want interrupts on the primary threads and
* with 4 pools all primary threads would map to the same pool.
*/
static int __init setup_iommu_pool_hash(void)
{
unsigned int i;
for_each_possible_cpu(i)
per_cpu(iommu_pool_hash, i) = hash_32(i, IOMMU_POOL_HASHBITS);
return 0;
}
subsys_initcall(setup_iommu_pool_hash);
#ifdef CONFIG_FAIL_IOMMU
static DECLARE_FAULT_ATTR(fail_iommu);
static int __init setup_fail_iommu(char *str)
{
return setup_fault_attr(&fail_iommu, str);
}
__setup("fail_iommu=", setup_fail_iommu);
static bool should_fail_iommu(struct device *dev)
{
return dev->archdata.fail_iommu && should_fail(&fail_iommu, 1);
}
static int __init fail_iommu_debugfs(void)
{
struct dentry *dir = fault_create_debugfs_attr("fail_iommu",
NULL, &fail_iommu);
return PTR_ERR_OR_ZERO(dir);
}
late_initcall(fail_iommu_debugfs);
static ssize_t fail_iommu_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", dev->archdata.fail_iommu);
}
static ssize_t fail_iommu_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int i;
if (count > 0 && sscanf(buf, "%d", &i) > 0)
dev->archdata.fail_iommu = (i == 0) ? 0 : 1;
return count;
}
static DEVICE_ATTR_RW(fail_iommu);
static int fail_iommu_bus_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev = data;
if (action == BUS_NOTIFY_ADD_DEVICE) {
if (device_create_file(dev, &dev_attr_fail_iommu))
pr_warn("Unable to create IOMMU fault injection sysfs "
"entries\n");
} else if (action == BUS_NOTIFY_DEL_DEVICE) {
device_remove_file(dev, &dev_attr_fail_iommu);
}
return 0;
}
/*
* PCI and VIO buses need separate notifier_block structs, since they're linked
* list nodes. Sharing a notifier_block would mean that any notifiers later
* registered for PCI buses would also get called by VIO buses and vice versa.
*/
static struct notifier_block fail_iommu_pci_bus_notifier = {
.notifier_call = fail_iommu_bus_notify
};
#ifdef CONFIG_IBMVIO
static struct notifier_block fail_iommu_vio_bus_notifier = {
.notifier_call = fail_iommu_bus_notify
};
#endif
static int __init fail_iommu_setup(void)
{
#ifdef CONFIG_PCI
bus_register_notifier(&pci_bus_type, &fail_iommu_pci_bus_notifier);
#endif
#ifdef CONFIG_IBMVIO
bus_register_notifier(&vio_bus_type, &fail_iommu_vio_bus_notifier);
#endif
return 0;
}
/*
* Must execute after PCI and VIO subsystem have initialised but before
* devices are probed.
*/
arch_initcall(fail_iommu_setup);
#else
static inline bool should_fail_iommu(struct device *dev)
{
return false;
}
#endif
static unsigned long iommu_range_alloc(struct device *dev,
struct iommu_table *tbl,
unsigned long npages,
unsigned long *handle,
unsigned long mask,
unsigned int align_order)
{
unsigned long n, end, start;
unsigned long limit;
int largealloc = npages > 15;
int pass = 0;
unsigned long align_mask;
unsigned long flags;
unsigned int pool_nr;
struct iommu_pool *pool;
align_mask = (1ull << align_order) - 1;
/* This allocator was derived from x86_64's bit string search */
/* Sanity check */
if (unlikely(npages == 0)) {
if (printk_ratelimit())
WARN_ON(1);
return DMA_MAPPING_ERROR;
}
if (should_fail_iommu(dev))
return DMA_MAPPING_ERROR;
/*
* We don't need to disable preemption here because any CPU can
* safely use any IOMMU pool.
*/
pool_nr = raw_cpu_read(iommu_pool_hash) & (tbl->nr_pools - 1);
if (largealloc)
pool = &(tbl->large_pool);
else
pool = &(tbl->pools[pool_nr]);
spin_lock_irqsave(&(pool->lock), flags);
again:
if ((pass == 0) && handle && *handle &&
(*handle >= pool->start) && (*handle < pool->end))
start = *handle;
else
start = pool->hint;
limit = pool->end;
/* The case below can happen if we have a small segment appended
* to a large, or when the previous alloc was at the very end of
* the available space. If so, go back to the initial start.
*/
if (start >= limit)
start = pool->start;
if (limit + tbl->it_offset > mask) {
limit = mask - tbl->it_offset + 1;
/* If we're constrained on address range, first try
* at the masked hint to avoid O(n) search complexity,
* but on second pass, start at 0 in pool 0.
*/
if ((start & mask) >= limit || pass > 0) {
spin_unlock(&(pool->lock));
pool = &(tbl->pools[0]);
spin_lock(&(pool->lock));
start = pool->start;
} else {
start &= mask;
}
}
n = iommu_area_alloc(tbl->it_map, limit, start, npages, tbl->it_offset,
dma_get_seg_boundary_nr_pages(dev, tbl->it_page_shift),
align_mask);
if (n == -1) {
if (likely(pass == 0)) {
/* First try the pool from the start */
pool->hint = pool->start;
pass++;
goto again;
} else if (pass <= tbl->nr_pools) {
/* Now try scanning all the other pools */
spin_unlock(&(pool->lock));
pool_nr = (pool_nr + 1) & (tbl->nr_pools - 1);
pool = &tbl->pools[pool_nr];
spin_lock(&(pool->lock));
pool->hint = pool->start;
pass++;
goto again;
} else if (pass == tbl->nr_pools + 1) {
/* Last resort: try largepool */
spin_unlock(&pool->lock);
pool = &tbl->large_pool;
spin_lock(&pool->lock);
pool->hint = pool->start;
pass++;
goto again;
} else {
/* Give up */
spin_unlock_irqrestore(&(pool->lock), flags);
return DMA_MAPPING_ERROR;
}
}
end = n + npages;
/* Bump the hint to a new block for small allocs. */
if (largealloc) {
/* Don't bump to new block to avoid fragmentation */
pool->hint = end;
} else {
/* Overflow will be taken care of at the next allocation */
pool->hint = (end + tbl->it_blocksize - 1) &
~(tbl->it_blocksize - 1);
}
/* Update handle for SG allocations */
if (handle)
*handle = end;
spin_unlock_irqrestore(&(pool->lock), flags);
return n;
}
static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl,
void *page, unsigned int npages,
enum dma_data_direction direction,
unsigned long mask, unsigned int align_order,
unsigned long attrs)
{
unsigned long entry;
dma_addr_t ret = DMA_MAPPING_ERROR;
int build_fail;
entry = iommu_range_alloc(dev, tbl, npages, NULL, mask, align_order);
if (unlikely(entry == DMA_MAPPING_ERROR))
return DMA_MAPPING_ERROR;
entry += tbl->it_offset; /* Offset into real TCE table */
ret = entry << tbl->it_page_shift; /* Set the return dma address */
/* Put the TCEs in the HW table */
build_fail = tbl->it_ops->set(tbl, entry, npages,
(unsigned long)page &
IOMMU_PAGE_MASK(tbl), direction, attrs);
/* tbl->it_ops->set() only returns non-zero for transient errors.
* Clean up the table bitmap in this case and return
* DMA_MAPPING_ERROR. For all other errors the functionality is
* not altered.
*/
if (unlikely(build_fail)) {
__iommu_free(tbl, ret, npages);
return DMA_MAPPING_ERROR;
}
/* Flush/invalidate TLB caches if necessary */
if (tbl->it_ops->flush)
tbl->it_ops->flush(tbl);
/* Make sure updates are seen by hardware */
mb();
return ret;
}
static bool iommu_free_check(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
unsigned long entry, free_entry;
entry = dma_addr >> tbl->it_page_shift;
free_entry = entry - tbl->it_offset;
if (((free_entry + npages) > tbl->it_size) ||
(entry < tbl->it_offset)) {
if (printk_ratelimit()) {
printk(KERN_INFO "iommu_free: invalid entry\n");
printk(KERN_INFO "\tentry = 0x%lx\n", entry);
printk(KERN_INFO "\tdma_addr = 0x%llx\n", (u64)dma_addr);
printk(KERN_INFO "\tTable = 0x%llx\n", (u64)tbl);
printk(KERN_INFO "\tbus# = 0x%llx\n", (u64)tbl->it_busno);
printk(KERN_INFO "\tsize = 0x%llx\n", (u64)tbl->it_size);
printk(KERN_INFO "\tstartOff = 0x%llx\n", (u64)tbl->it_offset);
printk(KERN_INFO "\tindex = 0x%llx\n", (u64)tbl->it_index);
WARN_ON(1);
}
return false;
}
return true;
}
static struct iommu_pool *get_pool(struct iommu_table *tbl,
unsigned long entry)
{
struct iommu_pool *p;
unsigned long largepool_start = tbl->large_pool.start;
/* The large pool is the last pool at the top of the table */
if (entry >= largepool_start) {
p = &tbl->large_pool;
} else {
unsigned int pool_nr = entry / tbl->poolsize;
BUG_ON(pool_nr > tbl->nr_pools);
p = &tbl->pools[pool_nr];
}
return p;
}
static void __iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
unsigned long entry, free_entry;
unsigned long flags;
struct iommu_pool *pool;
entry = dma_addr >> tbl->it_page_shift;
free_entry = entry - tbl->it_offset;
pool = get_pool(tbl, free_entry);
if (!iommu_free_check(tbl, dma_addr, npages))
return;
tbl->it_ops->clear(tbl, entry, npages);
spin_lock_irqsave(&(pool->lock), flags);
bitmap_clear(tbl->it_map, free_entry, npages);
spin_unlock_irqrestore(&(pool->lock), flags);
}
static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
__iommu_free(tbl, dma_addr, npages);
/* Make sure TLB cache is flushed if the HW needs it. We do
* not do an mb() here on purpose, it is not needed on any of
* the current platforms.
*/
if (tbl->it_ops->flush)
tbl->it_ops->flush(tbl);
}
int ppc_iommu_map_sg(struct device *dev, struct iommu_table *tbl,
struct scatterlist *sglist, int nelems,
unsigned long mask, enum dma_data_direction direction,
unsigned long attrs)
{
dma_addr_t dma_next = 0, dma_addr;
struct scatterlist *s, *outs, *segstart;
int outcount, incount, i, build_fail = 0;
unsigned int align;
unsigned long handle;
unsigned int max_seg_size;
BUG_ON(direction == DMA_NONE);
if ((nelems == 0) || !tbl)
return -EINVAL;
outs = s = segstart = &sglist[0];
outcount = 1;
incount = nelems;
handle = 0;
/* Init first segment length for backout at failure */
outs->dma_length = 0;
DBG("sg mapping %d elements:\n", nelems);
max_seg_size = dma_get_max_seg_size(dev);
for_each_sg(sglist, s, nelems, i) {
unsigned long vaddr, npages, entry, slen;
slen = s->length;
/* Sanity check */
if (slen == 0) {
dma_next = 0;
continue;
}
/* Allocate iommu entries for that segment */
vaddr = (unsigned long) sg_virt(s);
npages = iommu_num_pages(vaddr, slen, IOMMU_PAGE_SIZE(tbl));
align = 0;
if (tbl->it_page_shift < PAGE_SHIFT && slen >= PAGE_SIZE &&
(vaddr & ~PAGE_MASK) == 0)
align = PAGE_SHIFT - tbl->it_page_shift;
entry = iommu_range_alloc(dev, tbl, npages, &handle,
mask >> tbl->it_page_shift, align);
DBG(" - vaddr: %lx, size: %lx\n", vaddr, slen);
/* Handle failure */
if (unlikely(entry == DMA_MAPPING_ERROR)) {
if (!(attrs & DMA_ATTR_NO_WARN) &&
printk_ratelimit())
dev_info(dev, "iommu_alloc failed, tbl %p "
"vaddr %lx npages %lu\n", tbl, vaddr,
npages);
goto failure;
}
/* Convert entry to a dma_addr_t */
entry += tbl->it_offset;
dma_addr = entry << tbl->it_page_shift;
dma_addr |= (vaddr & ~IOMMU_PAGE_MASK(tbl));
DBG(" - %lu pages, entry: %lx, dma_addr: %lx\n",
npages, entry, dma_addr);
/* Insert into HW table */
build_fail = tbl->it_ops->set(tbl, entry, npages,
vaddr & IOMMU_PAGE_MASK(tbl),
direction, attrs);
if(unlikely(build_fail))
goto failure;
/* If we are in an open segment, try merging */
if (segstart != s) {
DBG(" - trying merge...\n");
/* We cannot merge if:
* - allocated dma_addr isn't contiguous to previous allocation
*/
if (novmerge || (dma_addr != dma_next) ||
(outs->dma_length + s->length > max_seg_size)) {
/* Can't merge: create a new segment */
segstart = s;
outcount++;
outs = sg_next(outs);
DBG(" can't merge, new segment.\n");
} else {
outs->dma_length += s->length;
DBG(" merged, new len: %ux\n", outs->dma_length);
}
}
if (segstart == s) {
/* This is a new segment, fill entries */
DBG(" - filling new segment.\n");
outs->dma_address = dma_addr;
outs->dma_length = slen;
}
/* Calculate next page pointer for contiguous check */
dma_next = dma_addr + slen;
DBG(" - dma next is: %lx\n", dma_next);
}
/* Flush/invalidate TLB caches if necessary */
if (tbl->it_ops->flush)
tbl->it_ops->flush(tbl);
DBG("mapped %d elements:\n", outcount);
/* For the sake of ppc_iommu_unmap_sg, we clear out the length in the
* next entry of the sglist if we didn't fill the list completely
*/
if (outcount < incount) {
outs = sg_next(outs);
outs->dma_length = 0;
}
/* Make sure updates are seen by hardware */
mb();
return outcount;
failure:
for_each_sg(sglist, s, nelems, i) {
if (s->dma_length != 0) {
unsigned long vaddr, npages;
vaddr = s->dma_address & IOMMU_PAGE_MASK(tbl);
npages = iommu_num_pages(s->dma_address, s->dma_length,
IOMMU_PAGE_SIZE(tbl));
__iommu_free(tbl, vaddr, npages);
s->dma_length = 0;
}
if (s == outs)
break;
}
return -EIO;
}
void ppc_iommu_unmap_sg(struct iommu_table *tbl, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction,
unsigned long attrs)
{
struct scatterlist *sg;
BUG_ON(direction == DMA_NONE);
if (!tbl)
return;
sg = sglist;
while (nelems--) {
unsigned int npages;
dma_addr_t dma_handle = sg->dma_address;
if (sg->dma_length == 0)
break;
npages = iommu_num_pages(dma_handle, sg->dma_length,
IOMMU_PAGE_SIZE(tbl));
__iommu_free(tbl, dma_handle, npages);
sg = sg_next(sg);
}
/* Flush/invalidate TLBs if necessary. As for iommu_free(), we
* do not do an mb() here, the affected platforms do not need it
* when freeing.
*/
if (tbl->it_ops->flush)
tbl->it_ops->flush(tbl);
}
void iommu_table_clear(struct iommu_table *tbl)
{
/*
* In case of firmware assisted dump system goes through clean
* reboot process at the time of system crash. Hence it's safe to
* clear the TCE entries if firmware assisted dump is active.
*/
if (!is_kdump_kernel() || is_fadump_active()) {
/* Clear the table in case firmware left allocations in it */
tbl->it_ops->clear(tbl, tbl->it_offset, tbl->it_size);
return;
}
#ifdef CONFIG_CRASH_DUMP
if (tbl->it_ops->get) {
unsigned long index, tceval, tcecount = 0;
/* Reserve the existing mappings left by the first kernel. */
for (index = 0; index < tbl->it_size; index++) {
tceval = tbl->it_ops->get(tbl, index + tbl->it_offset);
/*
* Freed TCE entry contains 0x7fffffffffffffff on JS20
*/
if (tceval && (tceval != 0x7fffffffffffffffUL)) {
__set_bit(index, tbl->it_map);
tcecount++;
}
}
if ((tbl->it_size - tcecount) < KDUMP_MIN_TCE_ENTRIES) {
printk(KERN_WARNING "TCE table is full; freeing ");
printk(KERN_WARNING "%d entries for the kdump boot\n",
KDUMP_MIN_TCE_ENTRIES);
for (index = tbl->it_size - KDUMP_MIN_TCE_ENTRIES;
index < tbl->it_size; index++)
__clear_bit(index, tbl->it_map);
}
}
#endif
}
void iommu_table_reserve_pages(struct iommu_table *tbl,
unsigned long res_start, unsigned long res_end)
{
int i;
WARN_ON_ONCE(res_end < res_start);
/*
* Reserve page 0 so it will not be used for any mappings.
* This avoids buggy drivers that consider page 0 to be invalid
* to crash the machine or even lose data.
*/
if (tbl->it_offset == 0)
set_bit(0, tbl->it_map);
if (res_start < tbl->it_offset)
res_start = tbl->it_offset;
if (res_end > (tbl->it_offset + tbl->it_size))
res_end = tbl->it_offset + tbl->it_size;
/* Check if res_start..res_end is a valid range in the table */
if (res_start >= res_end) {
tbl->it_reserved_start = tbl->it_offset;
tbl->it_reserved_end = tbl->it_offset;
return;
}
tbl->it_reserved_start = res_start;
tbl->it_reserved_end = res_end;
for (i = tbl->it_reserved_start; i < tbl->it_reserved_end; ++i)
set_bit(i - tbl->it_offset, tbl->it_map);
}
/*
* Build a iommu_table structure. This contains a bit map which
* is used to manage allocation of the tce space.
*/
struct iommu_table *iommu_init_table(struct iommu_table *tbl, int nid,
unsigned long res_start, unsigned long res_end)
{
unsigned long sz;
static int welcomed = 0;
unsigned int i;
struct iommu_pool *p;
BUG_ON(!tbl->it_ops);
/* number of bytes needed for the bitmap */
sz = BITS_TO_LONGS(tbl->it_size) * sizeof(unsigned long);
tbl->it_map = vzalloc_node(sz, nid);
if (!tbl->it_map) {
pr_err("%s: Can't allocate %ld bytes\n", __func__, sz);
return NULL;
}
iommu_table_reserve_pages(tbl, res_start, res_end);
/* We only split the IOMMU table if we have 1GB or more of space */
if ((tbl->it_size << tbl->it_page_shift) >= (1UL * 1024 * 1024 * 1024))
tbl->nr_pools = IOMMU_NR_POOLS;
else
tbl->nr_pools = 1;
/* We reserve the top 1/4 of the table for large allocations */
tbl->poolsize = (tbl->it_size * 3 / 4) / tbl->nr_pools;
for (i = 0; i < tbl->nr_pools; i++) {
p = &tbl->pools[i];
spin_lock_init(&(p->lock));
p->start = tbl->poolsize * i;
p->hint = p->start;
p->end = p->start + tbl->poolsize;
}
p = &tbl->large_pool;
spin_lock_init(&(p->lock));
p->start = tbl->poolsize * i;
p->hint = p->start;
p->end = tbl->it_size;
iommu_table_clear(tbl);
if (!welcomed) {
printk(KERN_INFO "IOMMU table initialized, virtual merging %s\n",
novmerge ? "disabled" : "enabled");
welcomed = 1;
}
iommu_debugfs_add(tbl);
return tbl;
}
bool iommu_table_in_use(struct iommu_table *tbl)
{
unsigned long start = 0, end;
/* ignore reserved bit0 */
if (tbl->it_offset == 0)
start = 1;
/* Simple case with no reserved MMIO32 region */
if (!tbl->it_reserved_start && !tbl->it_reserved_end)
return find_next_bit(tbl->it_map, tbl->it_size, start) != tbl->it_size;
end = tbl->it_reserved_start - tbl->it_offset;
if (find_next_bit(tbl->it_map, end, start) != end)
return true;
start = tbl->it_reserved_end - tbl->it_offset;
end = tbl->it_size;
return find_next_bit(tbl->it_map, end, start) != end;
}
static void iommu_table_free(struct kref *kref)
{
struct iommu_table *tbl;
tbl = container_of(kref, struct iommu_table, it_kref);
if (tbl->it_ops->free)
tbl->it_ops->free(tbl);
if (!tbl->it_map) {
kfree(tbl);
return;
}
iommu_debugfs_del(tbl);
/* verify that table contains no entries */
if (iommu_table_in_use(tbl))
pr_warn("%s: Unexpected TCEs\n", __func__);
/* free bitmap */
vfree(tbl->it_map);
/* free table */
kfree(tbl);
}
struct iommu_table *iommu_tce_table_get(struct iommu_table *tbl)
{
if (kref_get_unless_zero(&tbl->it_kref))
return tbl;
return NULL;
}
EXPORT_SYMBOL_GPL(iommu_tce_table_get);
int iommu_tce_table_put(struct iommu_table *tbl)
{
if (WARN_ON(!tbl))
return 0;
return kref_put(&tbl->it_kref, iommu_table_free);
}
EXPORT_SYMBOL_GPL(iommu_tce_table_put);
/* Creates TCEs for a user provided buffer. The user buffer must be
* contiguous real kernel storage (not vmalloc). The address passed here
* comprises a page address and offset into that page. The dma_addr_t
* returned will point to the same byte within the page as was passed in.
*/
dma_addr_t iommu_map_page(struct device *dev, struct iommu_table *tbl,
struct page *page, unsigned long offset, size_t size,
unsigned long mask, enum dma_data_direction direction,
unsigned long attrs)
{
dma_addr_t dma_handle = DMA_MAPPING_ERROR;
void *vaddr;
unsigned long uaddr;
unsigned int npages, align;
BUG_ON(direction == DMA_NONE);
vaddr = page_address(page) + offset;
uaddr = (unsigned long)vaddr;
if (tbl) {
npages = iommu_num_pages(uaddr, size, IOMMU_PAGE_SIZE(tbl));
align = 0;
if (tbl->it_page_shift < PAGE_SHIFT && size >= PAGE_SIZE &&
((unsigned long)vaddr & ~PAGE_MASK) == 0)
align = PAGE_SHIFT - tbl->it_page_shift;
dma_handle = iommu_alloc(dev, tbl, vaddr, npages, direction,
mask >> tbl->it_page_shift, align,
attrs);
if (dma_handle == DMA_MAPPING_ERROR) {
if (!(attrs & DMA_ATTR_NO_WARN) &&
printk_ratelimit()) {
dev_info(dev, "iommu_alloc failed, tbl %p "
"vaddr %p npages %d\n", tbl, vaddr,
npages);
}
} else
dma_handle |= (uaddr & ~IOMMU_PAGE_MASK(tbl));
}
return dma_handle;
}
void iommu_unmap_page(struct iommu_table *tbl, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction,
unsigned long attrs)
{
unsigned int npages;
BUG_ON(direction == DMA_NONE);
if (tbl) {
npages = iommu_num_pages(dma_handle, size,
IOMMU_PAGE_SIZE(tbl));
iommu_free(tbl, dma_handle, npages);
}
}
/* Allocates a contiguous real buffer and creates mappings over it.
* Returns the virtual address of the buffer and sets dma_handle
* to the dma address (mapping) of the first page.
*/
void *iommu_alloc_coherent(struct device *dev, struct iommu_table *tbl,
size_t size, dma_addr_t *dma_handle,
unsigned long mask, gfp_t flag, int node)
{
void *ret = NULL;
dma_addr_t mapping;
unsigned int order;
unsigned int nio_pages, io_order;
struct page *page;
int tcesize = (1 << tbl->it_page_shift);
size = PAGE_ALIGN(size);
order = get_order(size);
/*
* Client asked for way too much space. This is checked later
* anyway. It is easier to debug here for the drivers than in
* the tce tables.
*/
if (order >= IOMAP_MAX_ORDER) {
dev_info(dev, "iommu_alloc_consistent size too large: 0x%lx\n",
size);
return NULL;
}
if (!tbl)
return NULL;
/* Alloc enough pages (and possibly more) */
page = alloc_pages_node(node, flag, order);
if (!page)
return NULL;
ret = page_address(page);
memset(ret, 0, size);
/* Set up tces to cover the allocated range */
nio_pages = IOMMU_PAGE_ALIGN(size, tbl) >> tbl->it_page_shift;
io_order = get_iommu_order(size, tbl);
mapping = iommu_alloc(dev, tbl, ret, nio_pages, DMA_BIDIRECTIONAL,
mask >> tbl->it_page_shift, io_order, 0);
if (mapping == DMA_MAPPING_ERROR) {
free_pages((unsigned long)ret, order);
return NULL;
}
*dma_handle = mapping | ((u64)ret & (tcesize - 1));
return ret;
}
void iommu_free_coherent(struct iommu_table *tbl, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
if (tbl) {
unsigned int nio_pages;
size = PAGE_ALIGN(size);
nio_pages = IOMMU_PAGE_ALIGN(size, tbl) >> tbl->it_page_shift;
iommu_free(tbl, dma_handle, nio_pages);
size = PAGE_ALIGN(size);
free_pages((unsigned long)vaddr, get_order(size));
}
}
unsigned long iommu_direction_to_tce_perm(enum dma_data_direction dir)
{
switch (dir) {
case DMA_BIDIRECTIONAL:
return TCE_PCI_READ | TCE_PCI_WRITE;
case DMA_FROM_DEVICE:
return TCE_PCI_WRITE;
case DMA_TO_DEVICE:
return TCE_PCI_READ;
default:
return 0;
}
}
EXPORT_SYMBOL_GPL(iommu_direction_to_tce_perm);
#ifdef CONFIG_IOMMU_API
int dev_has_iommu_table(struct device *dev, void *data)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct pci_dev **ppdev = data;
if (!dev)
return 0;
if (device_iommu_mapped(dev)) {
*ppdev = pdev;
return 1;
}
return 0;
}
/*
* SPAPR TCE API
*/
static void group_release(void *iommu_data)
{
struct iommu_table_group *table_group = iommu_data;
table_group->group = NULL;
}
void iommu_register_group(struct iommu_table_group *table_group,
int pci_domain_number, unsigned long pe_num)
{
struct iommu_group *grp;
char *name;
grp = iommu_group_alloc();
if (IS_ERR(grp)) {
pr_warn("powerpc iommu api: cannot create new group, err=%ld\n",
PTR_ERR(grp));
return;
}
table_group->group = grp;
iommu_group_set_iommudata(grp, table_group, group_release);
name = kasprintf(GFP_KERNEL, "domain%d-pe%lx",
pci_domain_number, pe_num);
if (!name)
return;
iommu_group_set_name(grp, name);
kfree(name);
}
enum dma_data_direction iommu_tce_direction(unsigned long tce)
{
if ((tce & TCE_PCI_READ) && (tce & TCE_PCI_WRITE))
return DMA_BIDIRECTIONAL;
else if (tce & TCE_PCI_READ)
return DMA_TO_DEVICE;
else if (tce & TCE_PCI_WRITE)
return DMA_FROM_DEVICE;
else
return DMA_NONE;
}
EXPORT_SYMBOL_GPL(iommu_tce_direction);
void iommu_flush_tce(struct iommu_table *tbl)
{
/* Flush/invalidate TLB caches if necessary */
if (tbl->it_ops->flush)
tbl->it_ops->flush(tbl);
/* Make sure updates are seen by hardware */
mb();
}
EXPORT_SYMBOL_GPL(iommu_flush_tce);
int iommu_tce_check_ioba(unsigned long page_shift,
unsigned long offset, unsigned long size,
unsigned long ioba, unsigned long npages)
{
unsigned long mask = (1UL << page_shift) - 1;
if (ioba & mask)
return -EINVAL;
ioba >>= page_shift;
if (ioba < offset)
return -EINVAL;
if ((ioba + 1) > (offset + size))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(iommu_tce_check_ioba);
int iommu_tce_check_gpa(unsigned long page_shift, unsigned long gpa)
{
unsigned long mask = (1UL << page_shift) - 1;
if (gpa & mask)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(iommu_tce_check_gpa);
long iommu_tce_xchg_no_kill(struct mm_struct *mm,
struct iommu_table *tbl,
unsigned long entry, unsigned long *hpa,
enum dma_data_direction *direction)
{
long ret;
unsigned long size = 0;
ret = tbl->it_ops->xchg_no_kill(tbl, entry, hpa, direction);
if (!ret && ((*direction == DMA_FROM_DEVICE) ||
(*direction == DMA_BIDIRECTIONAL)) &&
!mm_iommu_is_devmem(mm, *hpa, tbl->it_page_shift,
&size))
SetPageDirty(pfn_to_page(*hpa >> PAGE_SHIFT));
return ret;
}
EXPORT_SYMBOL_GPL(iommu_tce_xchg_no_kill);
void iommu_tce_kill(struct iommu_table *tbl,
unsigned long entry, unsigned long pages)
{
if (tbl->it_ops->tce_kill)
tbl->it_ops->tce_kill(tbl, entry, pages);
}
EXPORT_SYMBOL_GPL(iommu_tce_kill);
int iommu_add_device(struct iommu_table_group *table_group, struct device *dev)
{
/*
* The sysfs entries should be populated before
* binding IOMMU group. If sysfs entries isn't
* ready, we simply bail.
*/
if (!device_is_registered(dev))
return -ENOENT;
if (device_iommu_mapped(dev)) {
pr_debug("%s: Skipping device %s with iommu group %d\n",
__func__, dev_name(dev),
iommu_group_id(dev->iommu_group));
return -EBUSY;
}
pr_debug("%s: Adding %s to iommu group %d\n",
__func__, dev_name(dev), iommu_group_id(table_group->group));
/*
* This is still not adding devices via the IOMMU bus notifier because
* of pcibios_init() from arch/powerpc/kernel/pci_64.c which calls
* pcibios_scan_phb() first (and this guy adds devices and triggers
* the notifier) and only then it calls pci_bus_add_devices() which
* configures DMA for buses which also creates PEs and IOMMU groups.
*/
return iommu_probe_device(dev);
}
EXPORT_SYMBOL_GPL(iommu_add_device);
#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
/*
* A simple iommu_ops to allow less cruft in generic VFIO code.
*/
static int
spapr_tce_platform_iommu_attach_dev(struct iommu_domain *platform_domain,
struct device *dev)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_table_group *table_group;
struct iommu_group *grp;
/* At first attach the ownership is already set */
if (!domain)
return 0;
grp = iommu_group_get(dev);
table_group = iommu_group_get_iommudata(grp);
/*
* The domain being set to PLATFORM from earlier
* BLOCKED. The table_group ownership has to be released.
*/
table_group->ops->release_ownership(table_group, dev);
iommu_group_put(grp);
return 0;
}
static const struct iommu_domain_ops spapr_tce_platform_domain_ops = {
.attach_dev = spapr_tce_platform_iommu_attach_dev,
};
static struct iommu_domain spapr_tce_platform_domain = {
.type = IOMMU_DOMAIN_PLATFORM,
.ops = &spapr_tce_platform_domain_ops,
};
static int
spapr_tce_blocked_iommu_attach_dev(struct iommu_domain *platform_domain,
struct device *dev)
{
struct iommu_group *grp = iommu_group_get(dev);
struct iommu_table_group *table_group;
int ret = -EINVAL;
/*
* FIXME: SPAPR mixes blocked and platform behaviors, the blocked domain
* also sets the dma_api ops
*/
table_group = iommu_group_get_iommudata(grp);
ret = table_group->ops->take_ownership(table_group, dev);
iommu_group_put(grp);
return ret;
}
static const struct iommu_domain_ops spapr_tce_blocked_domain_ops = {
.attach_dev = spapr_tce_blocked_iommu_attach_dev,
};
static struct iommu_domain spapr_tce_blocked_domain = {
.type = IOMMU_DOMAIN_BLOCKED,
.ops = &spapr_tce_blocked_domain_ops,
};
static bool spapr_tce_iommu_capable(struct device *dev, enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
return true;
default:
break;
}
return false;
}
static struct iommu_device *spapr_tce_iommu_probe_device(struct device *dev)
{
struct pci_dev *pdev;
struct pci_controller *hose;
if (!dev_is_pci(dev))
return ERR_PTR(-ENODEV);
pdev = to_pci_dev(dev);
hose = pdev->bus->sysdata;
return &hose->iommu;
}
static void spapr_tce_iommu_release_device(struct device *dev)
{
}
static struct iommu_group *spapr_tce_iommu_device_group(struct device *dev)
{
struct pci_controller *hose;
struct pci_dev *pdev;
pdev = to_pci_dev(dev);
hose = pdev->bus->sysdata;
if (!hose->controller_ops.device_group)
return ERR_PTR(-ENOENT);
return hose->controller_ops.device_group(hose, pdev);
}
static const struct iommu_ops spapr_tce_iommu_ops = {
.default_domain = &spapr_tce_platform_domain,
.blocked_domain = &spapr_tce_blocked_domain,
.capable = spapr_tce_iommu_capable,
.probe_device = spapr_tce_iommu_probe_device,
.release_device = spapr_tce_iommu_release_device,
.device_group = spapr_tce_iommu_device_group,
};
static struct attribute *spapr_tce_iommu_attrs[] = {
NULL,
};
static struct attribute_group spapr_tce_iommu_group = {
.name = "spapr-tce-iommu",
.attrs = spapr_tce_iommu_attrs,
};
static const struct attribute_group *spapr_tce_iommu_groups[] = {
&spapr_tce_iommu_group,
NULL,
};
void ppc_iommu_register_device(struct pci_controller *phb)
{
iommu_device_sysfs_add(&phb->iommu, phb->parent,
spapr_tce_iommu_groups, "iommu-phb%04x",
phb->global_number);
iommu_device_register(&phb->iommu, &spapr_tce_iommu_ops,
phb->parent);
}
void ppc_iommu_unregister_device(struct pci_controller *phb)
{
iommu_device_unregister(&phb->iommu);
iommu_device_sysfs_remove(&phb->iommu);
}
/*
* This registers IOMMU devices of PHBs. This needs to happen
* after core_initcall(iommu_init) + postcore_initcall(pci_driver_init) and
* before subsys_initcall(iommu_subsys_init).
*/
static int __init spapr_tce_setup_phb_iommus_initcall(void)
{
struct pci_controller *hose;
list_for_each_entry(hose, &hose_list, list_node) {
ppc_iommu_register_device(hose);
}
return 0;
}
postcore_initcall_sync(spapr_tce_setup_phb_iommus_initcall);
#endif
#endif /* CONFIG_IOMMU_API */